Microstructural Analysis of Irradiated U-Mo Fuel Plates

Microstructural Analysis of Irradiated U-Mo Fuel Plates

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Microstructural characterization of irradiated dispersion and monolithic RERTR fuel plates using scanning electron microscopy (SEM) is being performed in the Electron Microscopy Laboratory at the Idaho National Laboratory. The SEM analysis of samples from U-Mo dispersion fuel plates focuses primarily on the behavior of the Si that has been added to the Al matrix to improve the irradiation performance of the fuel plate and on the overall behavior of fission gases (e.g., Xe and Kr) that develop as bubbles in the fuel microstructure. For monolithic fuel plates, microstructural features of interest, include those found in the U-Mo foil and at the U-Mo/Zr and Zr/6061 Al cladding interfaces. For both dispersion and monolithic fuel plates, samples have been produced using an SEM equipped with a Focused Ion Beam (FIB). These samples are of very high quality and can be used to uncover some very unique microstructural features that are typically not observed when characterizing samples produced using more conventional techniques. Overall, for the dispersion fuel plates with matrices that contained Si, narrower fuel/matrix interaction layers are typically observed compared to the fuel plates with pure Al matrix, and for the monolithic fuel plates microstructural features have been observed in the U-10Mo foil that are similar to what have been observed in the fuel particles found in U-Mo dispersion fuels. Most recently, more prototypic monolithic fuel samples have been characterized and this paper describes the microstructures that have been observed in these samples.


Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si

Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with Al-2Si matrix after irradiation to around 50% LEU burnup. Si-rich layers were observed in many areas around the various U-7Mo fuel particles. In one local area of one of the samples, where the Si-rich layer had developed into a layer devoid of Si, relatively large fission gas bubbles were observed in the interaction phase. There may be a connection between the growth of these bubbles and the amount of Si present in the interaction layer. Overall, it was found that having Si-rich layers around the fuel particles after fuel plate fabrication positively impacted the overall performance of the fuel plate.


SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.


Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si

Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si

Author:

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with either Al-0.2Si or 4043 Al (~4.8% Si) alloy matrix in the as-fabricated and/or as-irradiated condition using optical metallography and/or scanning electron microscopy. Fuel plates with either matrix can have Si-rich layers around the U-7Mo particles after fabrication, and during irradiation these layers were observed to grow in thickness and to become Si-deficient in some areas of the fuel plates. For the fuel plates with 4043 Al, this was observed in fuel plate areas that were exposed to very aggressive irradiation conditions.


Analysis of Irradiated U-7wt%Mo Dispersion Fuel Microstructures Using Automated Image Processing

Analysis of Irradiated U-7wt%Mo Dispersion Fuel Microstructures Using Automated Image Processing

Author:

Publisher:

Published: 2016

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK

The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.


Fuel Plate Failure Experiments and Analyses in Irradiated U-10Mo Alloy

Fuel Plate Failure Experiments and Analyses in Irradiated U-10Mo Alloy

Author: Francine Joyce Rice

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The Materials Management and Minimization (M3) Program intends to qualify a new high-density low-enriched-uranium (LEU) U--Mo monolithic fuel to enable conversion of six US high-performance research reactors (USHPRRs). This thesis presents the preliminary results and discussions related to post-irradiation blister anneal studies and fission product release scoping studies performed on U--Mo monolithic fuel plates. Blister anneal testing on irradiated fuel plates is a temperature-resolved failure-threshold measurement technique historically used to assess fuel plate stability under off-normal operating conditions. The effects of fuel composition, geometry, fission density, and irradiation conditions are presented herein as parameters that were investigated for their impact on blister-threshold temperatures. The fission-product-transport scoping study successfully characterized the release, transport and temperature-resolved deposition behavior of iodine and cesium. Two failure temperatures were evaluated: 600 and 1250°C. Testing was performed in the main hot cell at the Materials and Fuels Complex located at Idaho National Laboratory.


Microstructure Characterization of RERTR Fuel

Microstructure Characterization of RERTR Fuel

Author:

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ðC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has been developed.


Observations Derived From the Characterization of Monolithic Fuel Plates Irradiated as Part of the RERTR-6 Experiment

Observations Derived From the Characterization of Monolithic Fuel Plates Irradiated as Part of the RERTR-6 Experiment

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Evaluation of the PIE results of the monolithic plates that were irradiated as part of the RERTR-6 experiment has continued. Specifically, comparisons have been made between the microstructures of the fuel plates before and after irradiation. Using the results from the rigorous characterization that was performed on the as-fabricated plates using scanning electron microscopy, it is possible to improve understanding of how monolithic fuel plates perform when they are irradiated. This paper will discuss the changes that occur, if any, in the microstructure of a monolithic fuel plate that is fabricated using techniques like what were employed for fabricating RERTR-6 fuel plates. In addition, the performance of fuel/cladding interaction layers that were present in the fuel plates due to the fabrication process will be discussed, particularly in the context of swelling of these layers and how these layers exhibit different behaviors depending on whether the fuel alloy in the fuel plate is U-7Mo or U-10Mo.


Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy

Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation, and in regions of the interaction layer that have relatively high Si concentrations the fission gas bubbles remain small and contained within the layer but in areas with lower Si concentrations the bubbles grow in size. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels, is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper discusses the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than was the sample taken from the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization.


Recent Development in Tem Characterization of Irradiated Rertr Fuels

Recent Development in Tem Characterization of Irradiated Rertr Fuels

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.