Microsoft Data Mining

Microsoft Data Mining

Author: Barry de Ville

Publisher: Elsevier

Published: 2001-05-17

Total Pages: 338

ISBN-13: 0080491847

DOWNLOAD EBOOK

Microsoft Data Mining approaches data mining from the particular perspective of IT professionals using Microsoft data management technologies. The author explains the new data mining capabilities in Microsoft's SQL Server 2000 database, Commerce Server, and other products, details the Microsoft OLE DB for Data Mining standard, and gives readers best practices for using all of them. The book bridges the previously specialized field of data mining with the new technologies and methods that are quickly making it an important mainstream tool for companies of all sizes.Data mining refers to a set of technologies and techniques by which IT professionals search large databases of information (such as those contained by SQL Server) for patterns and trends. Traditionally important in finance, telecommunication, and other information-intensive fields, data mining increasingly helps companies better understand and serve their customers by revealing buying patterns and related interests. It is becoming a foundation for e-commerce and knowledge management. - Unique book on a hot data management topic - Part of Digital Press's SQL Server and data mining clusters - Author is an expert on both traditional and Microsoft data mining technologies


Data Mining with Microsoft SQL Server 2008

Data Mining with Microsoft SQL Server 2008

Author: Jamie MacLennan

Publisher: John Wiley & Sons

Published: 2011-03-10

Total Pages: 14

ISBN-13: 1118080009

DOWNLOAD EBOOK

Eine praxisorientierte Einführung in das Data Mining Toolset des SQL Server 2008 und die neuen Data Mining Add-Ins für Office 2007. Enthält detaillierte Erläuterungen und Beispiele zu allen neuen Data Mining Features des SQL Server 2008. Gibt präzise Anleitungen zum Arbeiten mit den wichtigsten Data Mining-Algorithmen, (Naive Bayes-, Decision Trees-, Time Series-, Sequence Clustering-, Association- und Neural Network-Algorithmus), zum Data Mining in OLAP Datenbanken und mit SQL Server Integration Services 2008. Die begleitende Website enthält den kompletten Quellcode zu den Beispielen aus dem Buch.


Data Mining for Business Analytics

Data Mining for Business Analytics

Author: Galit Shmueli

Publisher: John Wiley & Sons

Published: 2019-10-14

Total Pages: 608

ISBN-13: 111954985X

DOWNLOAD EBOOK

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R


Microsoft Data Mining

Microsoft Data Mining

Author: Barry de Ville

Publisher: Digital Press

Published: 2001-05

Total Pages: 344

ISBN-13: 9781555582425

DOWNLOAD EBOOK

This guide teaches data mining from the perspective of IT professionals using Microsoft data management and e-commerce technologies. The book explains major new data mining capabilities in the forthcoming SQL Server 2000, Microsoft Commerce Server, and other products, and details the new Microsoft standard, "OLE DB for Data Mining".


Data Analysis Using SQL and Excel

Data Analysis Using SQL and Excel

Author: Gordon S. Linoff

Publisher: John Wiley & Sons

Published: 2010-09-16

Total Pages: 698

ISBN-13: 0470952520

DOWNLOAD EBOOK

Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.


Learn Data Mining Through Excel

Learn Data Mining Through Excel

Author: Hong Zhou

Publisher: Apress

Published: 2020-06-13

Total Pages: 223

ISBN-13: 1484259823

DOWNLOAD EBOOK

Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn Comprehend data mining using a visual step-by-step approachBuild on a theoretical introduction of a data mining method, followed by an Excel implementationUnveil the mystery behind machine learning algorithms, making a complex topic accessible to everyoneBecome skilled in creative uses of Excel formulas and functionsObtain hands-on experience with data mining and Excel Who This Book Is For Anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended.


Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

Author: Christopher M. Bishop

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9781493938438

DOWNLOAD EBOOK

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.


Predictive Analytics with Microsoft Azure Machine Learning

Predictive Analytics with Microsoft Azure Machine Learning

Author: Valentine Fontama

Publisher: Apress

Published: 2014-11-25

Total Pages: 178

ISBN-13: 148420445X

DOWNLOAD EBOOK

Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.


The Microsoft Data Warehouse Toolkit

The Microsoft Data Warehouse Toolkit

Author: Joy Mundy

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 698

ISBN-13: 0470640383

DOWNLOAD EBOOK

Best practices and invaluable advice from world-renowned data warehouse experts In this book, leading data warehouse experts from the Kimball Group share best practices for using the upcoming “Business Intelligence release” of SQL Server, referred to as SQL Server 2008 R2. In this new edition, the authors explain how SQL Server 2008 R2 provides a collection of powerful new tools that extend the power of its BI toolset to Excel and SharePoint users and they show how to use SQL Server to build a successful data warehouse that supports the business intelligence requirements that are common to most organizations. Covering the complete suite of data warehousing and BI tools that are part of SQL Server 2008 R2, as well as Microsoft Office, the authors walk you through a full project lifecycle, including design, development, deployment and maintenance. Features more than 50 percent new and revised material that covers the rich new feature set of the SQL Server 2008 R2 release, as well as the Office 2010 release Includes brand new content that focuses on PowerPivot for Excel and SharePoint, Master Data Services, and discusses updated capabilities of SQL Server Analysis, Integration, and Reporting Services Shares detailed case examples that clearly illustrate how to best apply the techniques described in the book The accompanying Web site contains all code samples as well as the sample database used throughout the case studies The Microsoft Data Warehouse Toolkit, Second Edition provides you with the knowledge of how and when to use BI tools such as Analysis Services and Integration Services to accomplish your most essential data warehousing tasks.


Data Mining

Data Mining

Author: Ian H. Witten

Publisher: Elsevier

Published: 2011-02-03

Total Pages: 665

ISBN-13: 0080890369

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization