Microscopy, Optical Spectroscopy, and Macroscopic Techniques

Microscopy, Optical Spectroscopy, and Macroscopic Techniques

Author: Christopher Jones

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 260

ISBN-13: 159259509X

DOWNLOAD EBOOK

This is the second of three volumes of Methods in Molecular Biology that deal with Physical Methods of Analysis. The first of these, Spectroscopic Methods and Analyses dealt with NMR spec troscopy, mass spectrometry, and metalloprotein techniques, and the third will cover X-ray crystallographic methods. As with the first volume. Microscopy, Optical Spectroscopy, and Macroscopic Techniques is intended to provide a basic understand ing for the biochemist or biologist who needs to collaborate with spe cialists in applying the techniques of modern physical chemistry to biological macromolecules. The methods treated in this book fall into four groups. Part One covers microscopy, which aims to visualize individual molecules or complexes of several molecules. Electron microscopy is the more familiar of these, while scanning tunneling microscopy is a new and rapidly developing tool. Methods for determining the shapes and sizes of molecules in solution are described in Part Two, which includes chapters on X-ray and neutron scattering, light scattering, and ult- centrifugation. Calorimetry, described in Part Three, provides the means to monitor processes involving thermodynamic changes, whether these are intramolecular, such as conformational transition, or the interactions between solutes or between a solute and its sol vent. Part Four is concerned with optical and infrared spectroscopy and describes applications ranging from the measurement of protein concentration by UV absorbance to the analysis of secondary struc ture using circular dichroism and Fourier-transform infrared spec troscopy.


Optical Spectroscopic and Microscopic Techniques

Optical Spectroscopic and Microscopic Techniques

Author: Harekrushna Sahoo

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9789811645518

DOWNLOAD EBOOK

This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.


New Techniques of Optical Microscopy and Microspectroscopy

New Techniques of Optical Microscopy and Microspectroscopy

Author: Cherry

Publisher: CRC Press

Published: 1991

Total Pages: 302

ISBN-13: 9780849371172

DOWNLOAD EBOOK

The last few years have seen an upsurge of interest in the study of cells by optical microscopy. The advent of new techniques such as confocal microscopy and the availability of extremely sensitive digital imaging devices are revolutioniz-ing the field. A number of groups have developed new ways of making spectroscopic measurements at the microscopic level, accompanied by the introduction of appropriate sen-sor molecules for cellular assays. The aim of this volume will be to bring together the various advances in order to provide the reader with an up-to-date account of what can now be achieved with modern optical microscopic methods.


A Practical Guide to Optical Microscopy

A Practical Guide to Optical Microscopy

Author: John Girkin

Publisher: CRC Press

Published: 2019-06-14

Total Pages: 247

ISBN-13: 1351630350

DOWNLOAD EBOOK

Choice Recommended Title, March 2020 Optical microscopy is used in a vast range of applications ranging from materials engineering to in vivo observations and clinical diagnosis, and thanks to the latest advances in technology, there has been a rapid growth in the number of methods available. This book is aimed at providing users with a practical guide to help them select, and then use, the most suitable method for their application. It explores the principles behind the different forms of optical microscopy, without the use of complex maths, to provide an understanding to help the reader utilise a specific method and then interpret the results. Detailed physics is provided in boxed sections, which can be bypassed by the non-specialist. It is an invaluable tool for use within research groups and laboratories in the life and physical sciences, acting as a first source for practical information to guide less experienced users (or those new to a particular methodology) on the range of techniques available. Features: The first book to cover all current optical microscopy methods for practical applications Written to be understood by a non-optical expert with inserts to provide the physical science background Brings together conventional widefield and confocal microscopy, with advanced non-linear and super resolution methods, in one book To learn more about the author please visit here.


Optical Spectroscopic and Microscopic Techniques

Optical Spectroscopic and Microscopic Techniques

Author: Harekrushna Sahoo

Publisher: Springer Nature

Published: 2022-02-25

Total Pages: 260

ISBN-13: 9811645507

DOWNLOAD EBOOK

This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.


Microscopic and Spectroscopic Imaging of the Chemical State

Microscopic and Spectroscopic Imaging of the Chemical State

Author: Michael D. Morris

Publisher: CRC Press

Published: 1993-07-26

Total Pages: 504

ISBN-13: 1482277530

DOWNLOAD EBOOK

Presents chemical state imaging methods useful on distance scales ranging from individual atoms to millimeters. This work is intended for chemists familiar with modern spectroscopies, but includes tutorial material on basic imaging processes for those with little background in the field.


Superresolution Optical Microscopy

Superresolution Optical Microscopy

Author: Barry R. Masters

Publisher: Springer Nature

Published: 2020-03-21

Total Pages: 415

ISBN-13: 3030216918

DOWNLOAD EBOOK

This book presents a comprehensive and coherent summary of techniques for enhancing the resolution and image contrast provided by far-field optical microscopes. It takes a critical look at the body of knowledge that comprises optical microscopy, compares and contrasts the various instruments, provides a clear discussion of the physical principles that underpin these techniques, and describes advances in science and medicine for which superresolution microscopes are required and are making major contributions. The text fills significant gaps that exist in other works on superresolution imaging, firstly by placing a new emphasis on the specimen, a critical component of the microscope setup, giving equal importance to the enhancement of both resolution and contrast. Secondly, it covers several topics not typically discussed in depth, such as Bessel and Airy beams, the physics of the spiral phase plate, vortex beams and singular optics, photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM), and light-sheet fluorescence microscopy (LSFM). Several variants of these techniques are critically discussed. Noise, optical aberrations, specimen damage, and artifacts in microscopy are also covered. The importance of validation of superresolution images with electron microscopy is stressed. Additionally, the book includes translations and discussion of seminal papers by Abbe and Helmholtz that proved to be pedagogically relevant as well as historically significant. This book is written for students, researchers, and engineers in the life sciences, medicine, biological engineering, and materials science who plan to work with or already are working with superresolution light microscopes. The volume can serve as a reference for these areas while a selected set of individual chapters can be used as a textbook for a one-semester undergraduate or first-year graduate course on superresolution microscopy. Moreover, the text provides a captivating account of curiosity, skepticism, risk-taking, innovation, and creativity in science and technology. Good scientific practice is emphasized throughout, and the author’s lecture slides on responsible conduct of research are included as an online resource which will be of interest to students, course instructors, and scientists alike.


Microscopic Methods in Metals

Microscopic Methods in Metals

Author: Ulrich Gonser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 3642465714

DOWNLOAD EBOOK

Methods of scientific investigation can be divided into two categories: they are either macroscopic or microscopic in nature. The former are generally older, classical methods where the sample as a whole is studied and various local prop erties are deduced by differentiation. The microscopic methods, on the other hand, have been discovered and developed more recently, and they operate for the most part on an atomistic scale. Glancing through the shelves of books on the various scientific fields, and, in particular, on the field of physical metallurgy, we are surprised at how lit tle consideration has been given to the microscopic methods. How these tools provide new insight and information is a question which so far has not at tracted much attention. Similar observations can be made at scientific confer ences, where the presentation of papers involving microscopic methods is often pushed into a far corner. This has led users of such methods to organize their own special conferences. The aim of this book is to bridge the present gap and encourage more interaction between the various fields of study and selected microscopic meth ods, with special emphasis on their suitability for investigating metals. In each case the principles of the method are reviewed, the advantages and successes pointed out, but also the shortcomings and limitations indicated.