Provides a comprehensive guide to all of the major microprocessor families (8, 16 and 32 bit). The hardware aspects and software implications are described, giving the reader an overall understanding of microcomputer architectures. The internal processor operation of each microprocessor device is presented, followed by descriptions of the instruction set and applications for the device. Software considerations are expanded with descriptions and examples of the main high level programming languages (BASIC, Pascal and C). The book also includes detailed descriptions of the three main operating systems (CP/M, DOS and UNIX) common to the most modern personal computers.
Provides an introduction to microprocessor systems, their operation and design. The text covers topics needed by engineers and computer scientists who are interested in applying microprocessors in practical situations, such as computer hardware, software, and the design and testing of systems.
The tenth edition of Operating System Concepts has been revised to keep it fresh and up-to-date with contemporary examples of how operating systems function, as well as enhanced interactive elements to improve learning and the student’s experience with the material. It combines instruction on concepts with real-world applications so that students can understand the practical usage of the content. End-of-chapter problems, exercises, review questions, and programming exercises help to further reinforce important concepts. New interactive self-assessment problems are provided throughout the text to help students monitor their level of understanding and progress. A Linux virtual machine (including C and Java source code and development tools) allows students to complete programming exercises that help them engage further with the material. The Print Companion includes all of the content found in a traditional text book, organized the way you would expect it, but without the problems.
Control engineering seeks to understand physical systems, using mathematical modeling, in terms of inputs, outputs and various components with different behaviors. It has an essential role in a wide range of control systems, from household appliances to space flight. This book provides an in-depth view of the technologies that are implemented in most varieties of modern industrial control engineering. A solid grounding is provided in traditional control techniques, followed by detailed examination of modern control techniques such as real-time, distributed, robotic, embedded, computer and wireless control technologies. For each technology, the book discusses its full profile, from the field layer and the control layer to the operator layer. It also includes all the interfaces in industrial control systems: between controllers and systems; between different layers; and between operators and systems. It not only describes the details of both real-time operating systems and distributed operating systems, but also provides coverage of the microprocessor boot code, which other books lack. In addition to working principles and operation mechanisms, this book emphasizes the practical issues of components, devices and hardware circuits, giving the specification parameters, install procedures, calibration and configuration methodologies needed for engineers to put the theory into practice. - Documents all the key technologies of a wide range of industrial control systems - Emphasizes practical application and methods alongside theory and principles - An ideal reference for practicing engineers needing to further their understanding of the latest industrial control concepts and techniques
The less-experienced engineer will be able to apply Ball's advice to everyday projects and challenges immediately with amazing results. In this new edition, the author has expanded the section on debug to include avoiding common hardware, software and interrupt problems. Other new features include an expanded section on system integration and debug to address the capabilities of more recent emulators and debuggers, a section about combination microcontroller/PLD devices, and expanded information on industry standard embedded platforms. - Covers all 'species' of embedded system chips rather than specific hardware - Learn how to cope with 'real world' problems - Design embedded systems products that are reliable and work in real applications
In the last few years, a large number of books on microprocessors have appeared on the market. Most of them originated in the context of the 4-bit and the 8-bit microprocessors and their comparatively simple structure. However, the techno-logical development from 8-bit to 16-bit microprossors led to processor components with a substantially more complex structure and with an expanded functionality and also to an increase in the system architecture's complexity. This books takes this advancement into account. It examines 16-bit micro-processor systems and descrihes their structure, their behavior and their programming. The principles of computer or ganization are treated at the component level. This is done by means of a detailed examination of the characteristic functionali ty of microprocessors. Furthermore the interactions between hardware and software, that are typical of microprocessor technology, are introduced. Interfacing techniques are one of the focal points of these considerations. This puplication is organized as a textbook and is intended as a self-teaching course on 16-bit microprocessors for students of computer science and communications, design engineers and users in a wide variety of technical and scientific fields. Basic knowledge of boolean algebra is assumed. The choice of material is based on the 16-bit microprocessors that are currently available on the market; on the other hand, the presentation is not bound to anyone of these microprocessors.
The continous development of computer technology supported by the VLSI revolution stimulated the research in the field ·of multiprocessors systems. The main motivation for the migration of design efforts from conventional architectures towards multiprocessor ones is the possibi I ity to obtain a significant processing power together with the improvement of price/performance, reliability and flexibility figures. Currently, such systems are moving from research laboratories to real field appl ications. Future technological advances and new generations of components are I ikely to further enhance this trend. This book is intended to provide basic concepts and design methodologies for engineers and researchers involved in the development of mul tiprocessor systems and/or of appl ications based on multiprocessor architectures. In addition the book can be a source of material for computer architecture courses at graduate level. A preliminary knowledge of computer architecture and logical design has been assumed in wri ting this book. Not all the problems related with the development of multiprocessor systems are addressed in th i s book. The covered range spans from the electrical and logical design problems, to architectural issues, to design methodologis for system software. Subj ects such as software development in a multiprocessor environment or loosely coupled multiprocessor systems are out of the scope of the book. Since the basic elements, processors and memories, are now available as standard integrated circuits, the key design problem is how to put them together in an efficient and reliable way.
Embedded microprocessor systems are affecting our daily lives at a fast pace, mostly unrecognised by the general public. Most of us are aware of the part they are playing in increasing business efficiency through office applications such as personal computers, printers and copiers. Only a few people, however, fully appreciate the growing role of embedded systems in telecommunications and industrial environments, or even in everyday products like cars and home appliances. The challenge to engineers and managers is not only highlighted by the sheer size of the market, ' 1.5 billion microcontrollers and microprocessors are produced every year ' but also by the accelerating innovation in embedded systems towards higher complexity in hardware, software and tools as well as towards higher performance and lower consumption. To maintain competitiveness in this demanding environment, an optimum mix of innovation, time to market and system cost is required. Choosing the right options and strategies for products and companies is crucial and rarely obvious. In this book the editors have, therefore, skilfully brought together more than fifty contributions from some of the leading authorities in embedded systems. The papers are conveniently grouped in four sections.