Micromechanism of Cleavage Fracture of Metals

Micromechanism of Cleavage Fracture of Metals

Author: Jianhong Chen

Publisher: Butterworth-Heinemann

Published: 2014-09-15

Total Pages: 488

ISBN-13: 0128010517

DOWNLOAD EBOOK

In this book the authors focus on the description of the physical nature of cleavage fracture to offer scientists, engineers and students a comprehensive physical model which vividly describes the cleavage microcracking processes operating on the local (microscopic) scale ahead of a defect. The descriptions of the critical event and the criteria for cleavage fracture will instruct readers in how to control the cleavage processes and optimize microstructure to improve fracture toughness of metallic materials. - Physical (mechanical) processes of cleavage fracture operating on the local (microscopic) scale, with the focus on the crack nucleation and crack propagation across the particle/grain and grain/grain boundaries - Critical event, i.e., the stage of greatest difficulty in forming the microcrack, which controls the cleavage fracture - Criteria triggering the cleavage microcracking with incorporation of the actions of macroscopic loading environment into the physical model - Effects of microstructure on the cleavage fracture, including the effects of grain size, second phase particles and boundary - Comprehensive description of the brittle fracture emerging in TiAl alloys and TiNi memory alloys


Crystal Plasticity

Crystal Plasticity

Author: Wojciech Polkowski

Publisher: MDPI

Published: 2021-04-27

Total Pages: 438

ISBN-13: 3036508384

DOWNLOAD EBOOK

The book presents a collection of 25 original papers (including one review paper) on state-of-the art achievements in the theory and practice of crystals plasticity. The articles cover a wide scope of research on materials behavior subjected to external loadings, starting from atomic-scale simulations, and a new methodological aspect, to experiments on a structure and mechanical response upon a large-scale processing. Thus, a presented contribution of researchers from 18 different countries can be virtually divided into three groups, namely (i) “modelling and simulation”; (ii) “methodological aspects”; and (iii) “experiments on process/structure/properties relationship”. Furthermore, a large variety of materials are investigated including more conventional (steels, copper, titanium, nickel, aluminum, and magnesium alloys) and advanced ones (composites or high entropy alloys). The book should be interested for senior students, researchers and engineers working within discipline of materials science and solid state physics of crystalline materials.