Fracture Mechanics

Fracture Mechanics

Author: Dietmar Gross

Publisher: Springer Science & Business Media

Published: 2011-07-03

Total Pages: 336

ISBN-13: 3642192408

DOWNLOAD EBOOK

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results


Fracture Mechanics

Fracture Mechanics

Author: Dietmar Gross

Publisher: Springer Science & Business Media

Published: 2007-05-23

Total Pages: 321

ISBN-13: 3540358498

DOWNLOAD EBOOK

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results


Micromechanics Modelling of Ductile Fracture

Micromechanics Modelling of Ductile Fracture

Author: Zengtao Chen

Publisher: Springer Science & Business Media

Published: 2013-04-02

Total Pages: 335

ISBN-13: 9400760981

DOWNLOAD EBOOK

This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.


Fracture micromechanics of polymer materials

Fracture micromechanics of polymer materials

Author: V.S. Kuksenko

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 319

ISBN-13: 9401715971

DOWNLOAD EBOOK

Within the last two decades fracture theory has been one of the most rapidly advancing fields of continuous media mechanics. Noteworthy suc cess has been achieved in linear fracture mechanics where the propagation of the macrocrack in elastic materials is under study. However, fracture of materials is by no means a simple process since it involves fracture of structural elements ranging from atomic sizes to macrocracks. To obtain all information about how and why materials fail, all stages of the process must be studied. For a long time both mechanical engineers and physicists have been concerned with the problem of the fracture of solids. Unfortunately, most of their work has been independent of the others. To solve the problem not only requires the minds and work of mechanical engineers and physicists but chemists and other specialists must be consulted as well. In this book we will consider some conclusions of the "physical" and "mechanical" schools acquired by the A. F. Joffe Physics-Technical Institute of the USSR Academy of Sciences in Leningrad and the Institute of Polymer Mechanics of Latvian SSR Academy of Sciences in Riga. The methods for studying the phenomena of fracture applied at both Institutes are different yet complimentary to one another; the materials tested are also sometimes different.


A Course on Damage Mechanics

A Course on Damage Mechanics

Author: Jean Lemaitre

Publisher: Springer Science & Business Media

Published: 2013-12-14

Total Pages: 225

ISBN-13: 3662027615

DOWNLOAD EBOOK

A new branch of science usually develops thus. Somebody publishes the basic ideas. Hesitatingly at first, then little by little, other original contributions appear, until a certain threshold is reached. Then, overview articles are printed, conferences are held, and a first mention is made in textbooks, until specialized monographs are written. Continuum darnage mechanics has reached that status now. To analyze or, if possible, to predict the failure of machine parts or other structures is one of the main goals of engineering science. Consequently fracture mechanics became one of its leading branches. It was based on the analysis of existing cracks. However, especially under conditions of cyclic loading, this might be too late to prevent a disaster. Therefore, the question regarding the precursory state, that is, the evolution of intemal darnage before macrocracks become visible, was then posed. One of the successful approaches to the problern was Weibull's theory which examined, in a statistical manner, the "weakest link" in the material volume under consideration. Unfortunately it proved too difficult mathematically to be applied to complicated parts or structures. Therefore it was highly appreciated by the scientific of material community when L. M. Kachanov published in 1958 a simple model darnage which subsequently could be extended to brittle elastic, plastic or viscous materials under all conditions of uniaxial or multiaxial, simple or cyclic loadings, so that it may be considered nearly universal.


Micromechanics of Fracture and Damage

Micromechanics of Fracture and Damage

Author: Luc Dormieux

Publisher: John Wiley & Sons

Published: 2016-06-07

Total Pages: 332

ISBN-13: 184821863X

DOWNLOAD EBOOK

This book deals with the mechanics and physics of fractures at various scales. Based on advanced continuum mechanics of heterogeneous media, it develops a rigorous mathematical framework for single macrocrack problems as well as for the effective properties of microcracked materials. In both cases, two geometrical models of cracks are examined and discussed: the idealized representation of the crack as two parallel faces (the Griffith crack model), and the representation of a crack as a flat elliptic or ellipsoidal cavity (the Eshelby inhomogeneity problem). The book is composed of two parts: The first part deals with solutions to 2D and 3D problems involving a single crack in linear elasticity. Elementary solutions of cracks problems in the different modes are fully worked. Various mathematical techniques are presented, including Neuber-Papkovitch displacement potentials, complex analysis with conformal mapping and Eshelby-based solutions. The second part is devoted to continuum micromechanics approaches of microcracked materials in relation to methods and results presented in the first part. Various estimates and bounds of the effective elastic properties are presented. They are considered for the formulation and application of continuum micromechanics-based damage models.


Mechanics of Fatigue

Mechanics of Fatigue

Author: Vladimir V. Bolotin

Publisher: CRC Press

Published: 1999-06-24

Total Pages: 210

ISBN-13: 9780849396632

DOWNLOAD EBOOK

Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.


Introduction to Fracture Mechanics

Introduction to Fracture Mechanics

Author: Robert O. Ritchie

Publisher: Elsevier

Published: 2021-06-23

Total Pages: 168

ISBN-13: 032389822X

DOWNLOAD EBOOK

Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)


Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures

Author: Vadim Silberschmidt

Publisher: Elsevier

Published: 2022-09-15

Total Pages: 666

ISBN-13: 0128239808

DOWNLOAD EBOOK

Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Second Edition reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, and in a broad range of application areas including aerospace, automotive, defense and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast and penetrative events, and has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting. - Examines dynamic deformation and fracture of composite materials, covering experimental, analytical and numerical aspects - Features four new chapters covering topics such as dynamic interfacial fracture, fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting - Addresses important application areas such as aerospace, automotive, wind energy, defense and sports


Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics

Author: G. Baker

Publisher: CRC Press

Published: 2004-01-14

Total Pages: 593

ISBN-13: 0203223454

DOWNLOAD EBOOK

This book derives from the invited IUTAM Symposium in September 1993. The contributions discuss recent advances in fracture mechanics studies of concrete, rock, ceramics and other brittle disordered materials at micro and structural levels. It draws together research and new applications in continuum, damage and fracture mechanics approaches.