Microelectronic Reliability: Integrity assessment and assurance

Microelectronic Reliability: Integrity assessment and assurance

Author: Emiliano Pollino

Publisher: Materials Science Library

Published: 1989

Total Pages: 568

ISBN-13:

DOWNLOAD EBOOK

A companion to v.1 (which covers reliability, test, and diagnostics), this volume explains the main failure mechanisms which may affect silicon devices and shows their effect on reliability characteristics. Due to the importance of VLSI devices, emphasis is given to metalizations and latch-up. Acidi


Microelectronic Reliability: Reliability, test and diagnostics

Microelectronic Reliability: Reliability, test and diagnostics

Author: Edward B. Hakim

Publisher: Artech House Publishers

Published: 1989

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

Text/reference spaning the theoretical concepts of reliability models and failure distributions, to GaAs microcircuit processing and test. Provides background on the development of quality assurance and verification procedures. Some of the new changes under development to cope with pressures brought


Semiconductor Device Reliability

Semiconductor Device Reliability

Author: A. Christou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 571

ISBN-13: 9400924828

DOWNLOAD EBOOK

This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.


Statistical Methods for Reliability Data

Statistical Methods for Reliability Data

Author: William Q. Meeker

Publisher: John Wiley & Sons

Published: 2022-01-24

Total Pages: 708

ISBN-13: 1118594487

DOWNLOAD EBOOK

An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.


Reliability of Electronic Components

Reliability of Electronic Components

Author: Titu I. Bajenescu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 547

ISBN-13: 3642585051

DOWNLOAD EBOOK

This application-oriented professional book explains why components fail, addressing the needs of engineers who apply reliability principles in design, manufacture, testing and field service. A detailed index, a glossary, acronym lists, reliability dictionaries and a rich specific bibliography complete the book.


Reliability of Semiconductor Lasers and Optoelectronic Devices

Reliability of Semiconductor Lasers and Optoelectronic Devices

Author: Robert Herrick

Publisher: Woodhead Publishing

Published: 2021-03-06

Total Pages: 336

ISBN-13: 0128192550

DOWNLOAD EBOOK

Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more


Reliability Engineering and Services

Reliability Engineering and Services

Author: Tongdan Jin

Publisher: John Wiley & Sons

Published: 2019-03-11

Total Pages: 562

ISBN-13: 1119167019

DOWNLOAD EBOOK

Offers a holistic approach to guiding product design, manufacturing, and after-sales support as the manufacturing industry transitions from a product-oriented model to service-oriented paradigm This book provides fundamental knowledge and best industry practices in reliability modelling, maintenance optimization, and service parts logistics planning. It aims to develop an integrated product-service system (IPSS) synthesizing design for reliability, performance-based maintenance, and spare parts inventory. It also presents a lifecycle reliability-inventory optimization framework where reliability, redundancy, maintenance, and service parts are jointly coordinated. Additionally, the book aims to report the latest advances in reliability growth planning, maintenance contracting and spares inventory logistics under non-stationary demand condition. Reliability Engineering and Service provides in-depth chapter coverage of topics such as: Reliability Concepts and Models; Mean and Variance of Reliability Estimates; Design for Reliability; Reliability Growth Planning; Accelerated Life Testing and Its Economics; Renewal Theory and Superimposed Renewals; Maintenance and Performance-Based Logistics; Warranty Service Models; Basic Spare Parts Inventory Models; Repairable Inventory Systems; Integrated Product-Service Systems (IPPS), and Resilience Modeling and Planning Guides engineers to design reliable products at a low cost Assists service engineers in providing superior after-sales support Enables managers to respond to the changing market and customer needs Uses end-of-chapter case studies to illustrate industry best practice Lifecycle approach to reliability, maintenance and spares provisioning Reliability Engineering and Service is an important book for graduate engineering students, researchers, and industry-based reliability practitioners and consultants.


Influence of Temperature on Microelectronics and System Reliability

Influence of Temperature on Microelectronics and System Reliability

Author: Pradeep Lall

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 327

ISBN-13: 0429611110

DOWNLOAD EBOOK

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The


Thermal Management of Electronic Systems II

Thermal Management of Electronic Systems II

Author: E. Beyne

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 358

ISBN-13: 9401155062

DOWNLOAD EBOOK

For the second time, the Eurotherm Committee has chosen Thermal Managment of Electronic Systems as the subject for its 45th Seminar, held at IMEC in Leuven, Belgium, from 20 to 22 September 1995. After the successfui first edition of this seminar in Delft, June 14-16, 1993, it was decided to repeat this event on a two year basis. This volume constitutes the edited proceedings of the Seminar. Thermal management of electronic systems is gaining importance. Whereas a few years ago papers on this subject where mainly devoted to applications in high end markets, such as mainframes and telecommunication switching equipment, we see a growing importance in the "lower" end applications. This may be understood from the growing impact of electronics on every day life, from car electronics, GSM phones, personal computers to electronic games. These applications add new requirements to the thermal design. The thermal problem and the applicable cooling strategies are quite different from those in high end products. In this seminar the latest developments in many of the different aspects of the thermal design of electronic systems were discussed. Particular attention was given to thermal modelling, experimental characterisation and the impact of thermal design on the reliability of electronic systems.