Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.
Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures
It is now some 15 years since atomic clusters were first produced and investigated in laboratories. Since then, knowledge concerning clusters has enjoyed rapid and sustained growth, and cluster research has become a new branch of science.
Proceedings of the December 1996 symposium. Contains 159 papers which describe materials advances involving stuctures spanning more than five orders of magnitude in size--from Group IV molecular clusters to single-crystal grains large enough for fabrication of thin-film transistors within their boundaries. Sections cover topics such as the theory of semiconductor molecular clusters and nanocrystals; luminescent Group IV clusters/nanocrystals and quantum wells; semiconductor systems confined in three and one dimensions; Group III- V, Group II-VI, and metal sulfide, iodide, and oxide nanocrystals; porous silicon; applications of nanocrystal and porous semiconductors; light-emitting properties and applications of porous Si; and research results on the nano-, micro-, and polycrystalline thin films. Annotation copyrighted by Book News, Inc., Portland, OR
This volume provides a comprehensive review of the experimental and theoretical aspects of the optical and transport properties of nanoporous silicon, their relation to the microscopic structure of nanocrystals, and the application of porous silicon in optical devices. As porous silicon is an ideal substance for the modelling of optical processes in nanocrystalline materials, this volume also is an excellent reference source on the more general subject of the structural and optical properties of nanocrystalline semiconductors.
Porous Silicon for Biomedical Applications, Second Edition, provides an updated guide to the diverse range of biomedical applications of porous silicon, from biosensing and imaging to tissue engineering and cancer therapy. Across biomedical disciplines, there is an ongoing search for biomaterials that are biocompatible, modifiable, structurally sound, and versatile. Porous silicon possesses a range of properties that make it ideal for a variety of biomedical applications, such as controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry. This book provides a fully updated and detailed overview of the range of biomedical applications for porous silicon. Part One offers the reader a helpful insight into the fundamentals and beneficial properties of porous silicon, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein modification, and biocompatibility. The book then builds on the systematic detailing of each biomedical application using porous silicon, from bioimaging and sensing to drug delivery and tissue engineering. This new edition also includes new chapters on in-vivo assessment of porous silicon, photodynamic and photothermal therapy, micro- and nanoneedles, Raman imaging, cancer immunotherapy, and more. With its acclaimed editor and international team of expert contributors, Porous Silicon for Biomedical Applications, Second Edition, is a technical resource and indispensable guide for all those involved in the research, development, and application of porous silicon and other biomaterials, while providing a comprehensive introduction for students and academics interested in this field. - Reviews the fundamental aspects of porous silicon, including the fabrication and unique properties of this useful material. - Discusses a broad selection of biomedical applications, offering a detailed insight into the benefits of porous silicon in both research and clinical settings. - Includes fully updated content from the previous edition, as well as brand new chapters, covering topics such as porous silicon micro- and nanoneedles, and cancer immunotherapy.