Studying the lung microbiome requires a specialist approach to sampling, laboratory techniques and statistical analysis. This Monograph introduces the techniques used and discusses how respiratory sampling, 16S rRNA gene sequencing, metagenomics and the application of ecological theory can be used to examine the respiratory microbiome. It examines the different components of the respiratory microbiome: viruses and fungi in addition to the more frequently studied bacteria. It also considers a range of contexts from the paediatric microbiome and how this develops to disease of all ages including asthma and chronic obstructive pulmonary disease, chronic suppurative lung diseases, interstitial lung diseases, acquired pneumonias, transplantation, cancer and HIV, and the interaction of the respiratory microbiome and the environment.
A great number of diverse microorganisms inhabit the human body and are collectively referred to as the human microbiome. Until recently, the role of the human microbiome in maintaining human health was not fully appreciated. Today, however, research is beginning to elucidate associations between perturbations in the human microbiome and human disease and the factors that might be responsible for the perturbations. Studies have indicated that the human microbiome could be affected by environmental chemicals or could modulate exposure to environmental chemicals. Environmental Chemicals, the Human Microbiome, and Health Risk presents a research strategy to improve our understanding of the interactions between environmental chemicals and the human microbiome and the implications of those interactions for human health risk. This report identifies barriers to such research and opportunities for collaboration, highlights key aspects of the human microbiome and its relation to health, describes potential interactions between environmental chemicals and the human microbiome, reviews the risk-assessment framework and reasons for incorporating chemicalâ€"microbiome interactions.
Microbiota are a promising and fascinating subject in biology because they integrate the microbial communities in humans, animals, plants, and the environment. In humans, microbiota are associated with the gut, skin, and genital, oral, and respiratory organs. The plant microbial community is referred to as "holobiont," and it is influential in the maintenance and health of plants, which themselves play a role in animal health and the environment. The contents of Microbiome-Host Interactions cover all areas as well as new research trends in the fields of plant, animal, human, and environmental microbiome interactions. The book covers microbiota in polar soil environments, in health and disease, in Caenorhabditis elegans, and in agroecosystems, as well as in rice root and actinorhizal root nodules, speleothems, and marine shallow-water hydrothermal vents. Moreover, this book provides comprehensive accounts of advanced next-generation DNA sequencing, metagenomic techniques, high-throughput 16S rRNA sequencing, and understanding nucleic acid sequence data from fungal, algal, viral, bacterial, cyanobacterial, actinobacterial, and archaeal communities using QIIME software (Quantitative Insights into Microbial Ecology). FEATURES Summarizes recent insight in microbiota and host interactions in distinct habitats, including Antarctic, hydrothermal vents, speleothems, oral, skin, gut, feces, reproductive tract, soil, root, root nodules, forests, and mangroves Illustrates the high-throughput amplicon sequencing, computational techniques involved in the microbiota analysis, downstream analysis and visualization, and multivariate analysis commonly used for microbiome analysis Describes probiotics and prebiotics in the composition of the gut microbiota, skin microbiome impact in dermatologic disease prevention, and microbial communities in the reproductive tract of humans and animals Presents information in a reachable way for students, teachers, researchers, microbiologists, computational biologists, and other professionals who are interested in strengthening or enlarging their knowledge about microbiome analysis with next-generation DNA sequencing in the different branches of the sciences
In recent years, our understanding of the unified airway concept has become paramount in the diagnosis, treatment, and management of sinonasal, airway, and respiratory disorders. The relationship between sinonasal inflammatory disorders, such as chronic rhinosinusitis, and pulmonary disorders, such as asthma or cystic fibrosis, is being examined more closely than ever before. This volume comprehensively reviews and discusses the unified airway approach, and more closely examines the relationship between sinonasal inflammatory disorders and pulmonary disorders. The text is formatted as an easy to read reference with bulleted points and sample case studies that maximize the clinical value of the evidence and data described. In addition to exploring chronic rhinosinusitis in patients with asthma and cystic fibrosis, other topics include pediatric chronic rhinosinusitis, aspirin-exacerbated respiratory disease, chronic bronchiectasis, primary ciliary dyskinesia, immunodeficiencies, and the unified airway microbiome. Rhinologic Disease and Respiratory Disorders will be an invaluable guide for practicing otolaryngologists, allergists, pulmonologists, otolaryngologists-in-training, and rhinologists. Foreword written by David W. Kennedy and Elina M. Toskala.
Implementing Precision Medicine in Best Practices of Chronic Airway Diseases provides a comprehensive overview of the application of precision medicine in airway diseases with a goal of promoting optimal control of disease, higher patient satisfaction and disease prevention. As medical research continues to fund this area, the book highlights the need for implementation of the principles of precision medicine into the bedside management of chronic airway diseases. It is clear that chronic airway diseases are heterogeneous and that a personalized approach is warranted whereby treatment is tailored to the level of the individual patient.Written for basic researchers, medical doctors and other healthcare practitioners this book provides guidance on the implementation of the principles of precision medicine into further research and daily clinical practice. - Bridges the gap between precision medicine research and the implementation of the principles into daily clinical practice - Includes contributions from key opinion leaders in the field of airway disease giving a worldwide perspective - Discusses precision medicine in terms of personalized and stratified medicine, biomarkers, prediction of success, participation of the patient and prevention of disease
Biofilms are highly organized polymicrobial communities that are embedded in an extracellular matrix and formed on natural and artificial surfaces. In the oral cavity, biofilms are formed not only on natural teeth, but also on restorative materials, prosthetic constructions, and dental implants. Oral diseases like caries, gingivitis, periodontitis, and also pulp inflammation are associated with biofilms. This publication is an up-to-date overview on oral biofilms from different clinically relevant perspectives. Experts comprising basic researchers and clinicians report on recent research relating to biofilms - from general summaries to recommendations for daily clinical work. This book covers all aspects of oral biofilms, including models used in the laboratory, biofilms in dental water unit lines, periodontal and peri-implant biofilms, caries-related biofilms, halitosis, endodontic biofilms, and Candida infections, as well as biofilms on dental materials and on orthodontic appliances. Several chapters deal with anti-biofilm therapy, from the efficacy of mechanical methods and the use of antimicrobials, to alternative concepts. This publication is particularly recommended to dental medicine students, practitioners, other oral healthcare professionals, and scientists with an interest in translational research on biofilms.
This book ventures into a new and exciting area of discovery that directly ties our current knowledge of cancer to the discovery of microorganisms associated with different types of cancers. Recent studies demonstrate that microorganisms are directly linked to the establishment of cancers and that they can also contribute to the initiation, as well as persistence of, the cancers. Microbiome and Cancer covers the current knowledge of microbiome and its association with human cancers. It provides important reading for novices, senior undergraduates in cancer and microbiology, graduate students, junior investigators, residents, fellows and established investigators in the fields of cancer and microbiology. We cover areas related to known, broad concepts in microbiology and how they can relate to the ongoing discoveries of the micro-environment and the changes in the metabolic and physiologic states in that micro-environment, which are important for the ongoing nurturing and survival of the poly-microbial content that dictates activities in that micro-environment. We cover the interactions of microorganisms associated with gastric carcinomas, which are important for driving this particular cancer. Additional areas include oral cancers, skin cancers, ovarian cancers, breast cancers, nasopharyngeal cancers, lung cancers, mesotheliomas, Hodgkin’s and non-Hodgkin’s lymphomas, glioblastoma multiforme, hepatocellular carcinomas, as well as the inflammatory response related to the infectious agents in cancers. This book covers the metabolic changes that occur because of infection and their support for development of cancers, chronic infection and development of therapeutic strategies for detection and control of the infection. The field of microbiome research has exploded over the last five years, and we are now understanding more and more about the context in which microorganisms can contribute to the onset of cancers in humans. The field of microbiome research has demonstrated that the human body has specific biomes for tissues and that changes in these biomes at the specific organ sites can result in disease. These changes can result in dramatic differences in metabolic shifts that, together with genetic mutations, will produce the perfect niche for establishment of the particular infection programmes in that organ site. We are just beginning to understand what those changes are and how they influence the disease state. Overall, we hope to bring together the varying degrees of fluctuations in the microbiome at the major organ sites and how these changes affect the normal cellular processes because of dysregulation, leading to proliferation of the associated tissues.
The book provides an overview on how the microbiome contributes to human health and disease. The microbiome has also become a burgeoning field of research in medicine, agriculture & environment. The readers will obtain profound knowledge on the connection between intestinal microbiota and immune defense systems, medicine, agriculture & environment. The book may address several researchers, clinicians and scholars working in biomedicine, microbiology and immunology. The application of new technologies has no doubt revolutionized the research initiatives providing new insights into the dynamics of these complex microbial communities and their role in medicine, agriculture & environment shall be more emphasized. Drawing on broad range concepts of disciplines and model systems, this book primarily provides a conceptual framework for understanding these human-microbe, animal-microbe & plant-microbe, interactions while shedding critical light on the scientific challenges that lie ahead. Furthermore this book explains why microbiome research demands a creative and interdisciplinary thinking—the capacity to combine microbiology with human, animal and plant physiology, ecological theory with immunology, and evolutionary perspectives with metabolic science.This book provides an accessible and authoritative guide to the fundamental principles of microbiome science, an exciting and fast-emerging new discipline that is reshaping many aspects of the life sciences. These microbial partners can also drive ecologically important traits, from thermal tolerance to diet in a typical immune system, and have contributed to animal and plant diversification over long evolutionary timescales. Also this book explains why microbiome research presents a more complete picture of the biology of humans and other animals, and how it can deliver novel therapies for human health and new strategies.
The Food Forum convened a public workshop on February 22-23, 2012, to explore current and emerging knowledge of the human microbiome, its role in human health, its interaction with the diet, and the translation of new research findings into tools and products that improve the nutritional quality of the food supply. The Human Microbiome, Diet, and Health: Workshop Summary summarizes the presentations and discussions that took place during the workshop. Over the two day workshop, several themes covered included: The microbiome is integral to human physiology, health, and disease. The microbiome is arguably the most intimate connection that humans have with their external environment, mostly through diet. Given the emerging nature of research on the microbiome, some important methodology issues might still have to be resolved with respect to undersampling and a lack of causal and mechanistic studies. Dietary interventions intended to have an impact on host biology via their impact on the microbiome are being developed, and the market for these products is seeing tremendous success. However, the current regulatory framework poses challenges to industry interest and investment.