Morphological, biological, biochemical and physiological characteristics have been used for the detection, identification and differentiation of fungal pathogens up to species level. Tests based on biological characteristics are less consistent. Immunoassays have been shown to be effective in detecting fungal pathogens present in plants and environmental samples. Development of monoclonal antibody technology has greatly enhanced the sensitivity and specificity of detection, identification and differentiation of fungal species and varieties/strains. Nucleic acid-based techniques involving hybridization with or amplification of unique DNA have provided results rapidly and reliably. Presentation of a large number of protocols is a unique feature of this volume.
This work provides information on the detection, identification, and differentiation of all microbial plant pathogens - presenting modern protocols for rapid diagnosis of diseases based on biological, physical, chemical and molecular properties. It contains methods for the selection of disease-free seeds and vegetatively propagated planting materia
Using molecular methods for plant disease diagnosis provides diagnosticians with a number of advantages over more traditional methods. They can allow the identification of morphologically similar species, for example, or the detection of infection prior to symptom formation. Not only can molecular tools help by increasing the efficacy, accuracy and speed of diagnosis; their common technological basis provides further benefits, especially where resources are limited and traditional skills are hard to sustain. This book provides protocols for nucleic acid-based methods currently applied to plant pathogen detection and identification. It takes the practitioner through the full range of molecular diagnostic and detection methods and, as these generic techniques are appropriate for use on any target with minimal modification, also provides a useful resource for students of plant pathology and plant pathologists. Beginning with the background and future directions of the science, it then addresses DNA barcoding, microarrays, polymerase chain reactions (PCR), quality assurance and more, forming a complete reference on the subject.
The need for the development of techniques based on the characteristics of the viral proteins and genomic nucleic acids was realized in order to detect, identify, differentiate and quantify viruses in the infected plants/planting materials with or without symptoms of infection. Immunoassays have been successfully applied for the detection of viruses in crop and weed host plant species as well as in the vectors. Nucleic acid-based techniques have been demonstrated to be the most reliable and sensitive tests for detection, identification and differentiation of viruses and viroids present in plants and planting materials.. Inclusion of numerous protocols in appropriate chapters as appendix is a unique feature of this volume.
Healthy seeds and propagules are the basic requirement for producing good grains, fruits and vegetables needed for human survival and perpetuation. Dispersal of microbial plant pathogens via seeds and propagules has assumed more importance than other modes of dispersal, as infected seeds and propagules have the potential to become the primary sources of carrying pathogen inoculum for subsequent crops. Several diseases transmitted through seeds and propagules have been shown to have the potential to damage economies as a result of huge quantitative and qualitative losses in numerous crops. Hence, it is essential to rapidly detect, identify and differentiate the microbial plant pathogens present in seeds and propagules precisely and reliably, using sensitive techniques. Microbial Plant Pathogens: Detection and Management in Seeds and Propagules provides a comprehensive resource on seed-borne and propagule-borne pathogens. Information on the biology of microbial pathogens, including genetic diversity, infection process and survival mechanisms of pathogens and epidemiology of diseases caused by them, are discussed critically and in detail to highlight weak links in the life cycles of the pathogens. Development of effective disease management systems, based on the principles of exclusion and eradication of pathogens and immunization of crop plants to enhance the levels of resistance of cultivars to diseases, has been effective to keep the pathogens at bay. The need for production of disease-free seeds/propagules has been emphasized to prevent the carryover of the inoculum to the next crop or introduction of the pathogens to other locations. Effectiveness of adopting simple cultural practices and development of cultivars resistant to diseases through traditional breeding methods or biotechnological approach have resulted in reducing the pathogen inoculum and disease incidence. Although application of different chemicals may reduce the disease incidence effectively, biological management of crop diseases, employing potential biological control agents have to be preferred to preserve the agroecosystems. Greater efforts have to be made to integrate compatible strategies to enhance the effectiveness of diseases management systems. Protocols appended at the end of relevant chapters form a unique feature of this book to enable the researchers to fine-tune their projects. This 2 volume set provides comprehensive and updated information about the economically-important groups of microbial plant pathogens carried by seed and propagules. Graduate students, researchers and teachers of plant pathology, plant protection, microbiology, plant breeding and genetics, agriculture and horticulture, as well as certification and quarantine personnel will find the information presented in this book useful.
Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity & Traceability explores all aspects of microbe-food interactions, especially as they pertain to food safety. Traditional morphological, physiological, and biochemical techniques for the detection, differentiation, and identification of microorganisms have severe limitations. As an alternative, many of those responsible for monitoring food safety are turning to molecular tools for identifying foodborne microorganisms. This book reviews the latest molecular techniques for detecting, identifying, and tracing microorganisms in food, addressing both good foodborne microbes, such as those used for fermentation and in probiotics, and harmful ones responsible for foodborne illness and food quality control problems. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity & Traceability brings together contributions by leading international authorities in food biology from academe, industry, and government. Chapters cover food microbiology, food mycology, biochemistry, microbial ecology, food biotechnology and bio-processing, food authenticity, food origin traceability, and food science and technology. Throughout, special emphasis is placed on novel molecular techniques relevant to food biology research and for monitoring and assessing food safety and quality. Brings together contributions from scientists at the leading edge of the revolution in molecular food biology Explores how molecular techniques can satisfy the dire need to deepen our understanding of how microbial communities develop in foods of all types and in all forms Covers all aspects of food safety and hygiene, microbial ecology, food biotechnology and bio-processing, food authenticity, food origin traceability, and more Fills a yawning gap in the world literature on food traceability using molecular techniques This book is an important working resource for professionals in agricultural, food science, biomedicine, and government involved in food regulation and safety. It is also an excellent reference for advanced students in agriculture, food science and food technology, biochemistry, microbiology, and biotechnology, as well as academic researchers in those fields.
This book is a compilation of the most challenging and significant chapters on the diagnosis and management of important bacterial, fungal, viral, viroid, phytoplasma, non parasitic diseases and various physiological disorders, in various crops. The chapters have been contributed by eminent plant pathologists, having wide experience of teaching and research on various crops with different types of diseases, which cause great economic losses. The book would be very useful for students, teachers and researchers of plant pathology. This book highlights recent advances made in the development of new types of resistance in host plants and alternative strategies for managing plant diseases to improve food quality and reduce the negative public health impact associated with plant diseases. Having entered into 21st century advancements in the Diagnosis of Plant Pathogens and Plant Disease Management need to be closely examined and adequately applied, so that newer challenges facing plant pathology could be adequately addressed in attaining food security for the growing population. Substantial advancements have been made in terms of expanding knowledge base of the biology of plant-microbial interactions, disease management strategies and application and practice of Plant Pathology. Application of molecular biology in Plant Pathology has greatly improved our ability to detect plant pathogens and in increasing our understanding, their ecology and epidemiology. Similarly, new technologies and resources have been evolved for the development of sustainable crop protection systems by different control strategies against various pests and pathogens that are important components of the integrated pest management programme. Natural products and chemical compounds discovered as a result of basic research and molecular mechanisms of pathogenesis have led to the development of “biorational” pesticides. Biological control has been found to be the most significant approach to plant health management during the twentieth century and promises using modern biotechnology, to be even more significant in the twenty-first century.
This substantially updated edition now in full colour provides key techniques used when working with fungal and fungal-like plant pathogens. As a practical manual it also deals with disease recognition, detection and identification of fungi, plus methods to characterise and curate fungi and handle them under quarantine and quality assurance systems. Fungal Plant Pathogens: Applied Techniques, 2nd edition provides a valuable guide to investigating fungal plant diseases and interpreting laboratory findings for postgraduate and advanced undergraduate students, extension plant pathologists, consultants and advisers in agriculture, forestry and horticulture, and the food supply chain.
Plant diseases play an important role on our daily lives. Most of plant diseases are visible and are caused by biotic and/or abiotic factors. Symptoms are usually the results of a morphological change, alteration or damage to plant tissue and/or cells due to an interference of the plant’s metabolism. All basic structures of vascular plants are subject to attack by pathogens. The failure in accurate disease diagnosis and management may lead to huge losses in plant production and related commodities, which causes nutritional food scarcity. Typically, the appearance of a biotic symptom will indicate the relatively late stage of an infection and/or colonization of a pathogen. Expert detection, accurate diagnosis, and timely management play a significant role in keeping plants free from pathogens. In this book expert scholars share their research knowledge and key literature which are vital toward the diagnosis of plant diseases across the globe, addressing traditional plant pathology techniques, as well as advanced molecular diagnostic approach.
Food Security and Plant Disease Management offers a comprehensive exploration of biocontrol, the latest technologies being used in plant health assurance, and resulting impacts on crop production and food security. Discussing both theoretical and practical topics, the book examines basic and advanced applications of biosensor and nano-technologies, introduces plant disease, including modes of action and their transmission in host plants, then covers factors contributing to plant disease and various means of addressing those diseases. This volume is part of the Microorganisms in Agriculture and the Environment series and provides important information for developing new effective plant protection practices. The direct or indirect applications of beneficial microbes in the treatment of plant disease is termed "microbial control and these methods have increasingly been identified as important options for plant health management. The beneficial microbes as well as recent omic and nano-technologies also reveal important mechanisms that can be utilized in disease management strategies. - Explores the impact of climate change on plant diseases and new methods of resolution - Includes information on gene expression during crop disease management - Presents insights into the legal and commercial aspects of microbial control