Several billion people are at daily risk of life threatening vector-borne diseases such as malaria, trypanosomiasis and dengue. This volume describes the way in which the causal pathogens of such diseases interact with the vectors that transmit them. It details the elegant biological adaptations that have enabled pathogens to live with their vectors and, in some circumstances, to control them. This knowledge has led to novel preventative strategies in the form of antibiotics and new vaccines which are targeted not at the pathogen itself but at its specific vector.
This open access book identifies and discusses biodiversity’s contribution to physical, mental and spiritual health and wellbeing. Furthermore, the book identifies the implications of this relationship for nature conservation, public health, landscape architecture and urban planning – and considers the opportunities of nature-based solutions for climate change adaptation. This transdisciplinary book will attract a wide audience interested in biodiversity, ecology, resource management, public health, psychology, urban planning, and landscape architecture. The emphasis is on multiple human health benefits from biodiversity - in particular with respect to the increasing challenge of climate change. This makes the book unique to other books that focus either on biodiversity and physical health or natural environments and mental wellbeing. The book is written as a definitive ‘go-to’ book for those who are new to the field of biodiversity and health.
Biology of Disease Vectors presents a comprehensive and advanced discussion of disease vectors and what the future may hold for their control. This edition examines the control of disease vectors through topics such as general biological requirements of vectors, epidemiology, physiology and molecular biology, genetics, principles of control and insecticide resistance. Methods of maintaining vectors in the laboratory are also described in detail.No other single volume includes both basic information on vectors, as well as chapters on cutting-edge topics, authored by the leading experts in the field. The first edition of Biology of Disease Vectors was a landmark text, and this edition promises to have even more impact as a reference for current thought and techniques in vector biology.Current - each chapter represents the present state of knowledge in the subject areaAuthoritative - authors include leading researchers in the fieldComplete - provides both independent investigator and the student with a single reference volume which adopts an explicitly evolutionary viewpoint throuoghout all chapters. Useful - conceptual frameworks for all subject areas include crucial information needed for application to difficult problems of controlling vector-borne diseases
This work aims to advance the intellectual understanding of the emergence and reemergence of infectious diseases. Practitioners of diverse disciplines - epidemiology, evolutionary biology, environmental sciences, ecology, climatology, social and behavioural sciences, entomology, microbiology, parasitology and virology - report on recently developed techniques from many areas, including molecular biology, genetics, mathematical modelling and remote sensing. These techniques are exploited in an attempt to understand global configurations of infectious disease emergence. Analysis of historical examples reveals patterns not apparent during a single lifetime of observation. This volume emphasises the creative use of cross-disciplinary approaches to extend the limits of knowledge in this important area. These 32 papers were presented at a workshop held by the Harvard School of Public Health at Woods Hole, Massachusetts, 7th-10th November.
Population Biology of Vector-Borne Diseases is the first comprehensive survey of this rapidly developing field. The chapter topics provide an up-to-date presentation of classical concepts, reviews of emerging trends, synthesis of existing knowledge, and a prospective agenda for future research. The contributions offer authoritative and international perspectives from leading thinkers in the field. The dynamics of vector-borne diseases are far more intrinsically ecological compared with their directly transmitted equivalents. The environmental dependence of ectotherm vectors means that vector-borne pathogens are acutely sensitive to changing environmental conditions. Although perennially important vector-borne diseases such as malaria and dengue have deeply informed our understanding of vector-borne diseases, recent emerging viruses such as West Nile virus, Chikungunya virus, and Zika virus have generated new scientific questions and practical problems. The study of vector-borne disease has been a particularly rich source of ecological questions, while ecological theory has provided the conceptual tools for thinking about their evolution, transmission, and spatial extent. Population Biology of Vector-Borne Diseases is an advanced textbook suitable for graduate level students taking courses in vector biology, population ecology, evolutionary ecology, disease ecology, medical entomology, viral ecology/evolution, and parasitology, as well as providing a key reference for researchers across these fields.
Since the dawn of medical science, people have recognized connections between a change in the weather and the appearance of epidemic disease. With today's technology, some hope that it will be possible to build models for predicting the emergence and spread of many infectious diseases based on climate and weather forecasts. However, separating the effects of climate from other effects presents a tremendous scientific challenge. Can we use climate and weather forecasts to predict infectious disease outbreaks? Can the field of public health advance from "surveillance and response" to "prediction and prevention?" And perhaps the most important question of all: Can we predict how global warming will affect the emergence and transmission of infectious disease agents around the world? Under the Weather evaluates our current understanding of the linkages among climate, ecosystems, and infectious disease; it then goes a step further and outlines the research needed to improve our understanding of these linkages. The book also examines the potential for using climate forecasts and ecological observations to help predict infectious disease outbreaks, identifies the necessary components for an epidemic early warning system, and reviews lessons learned from the use of climate forecasts in other realms of human activity.
Vectors of Plant Pathogens is a collection of papers that discusses the interrelationship of plant pathogens with their vectors. This collection deals with the numerous vector groups associated with plant pathogens. One paper describes the biology, feeding behavior and distribution of aphids, leafhoppers, plant hoppers, mealy bugs, whiteflies, psyllids, membracids. Another paper addresses the virus transmission characteristics of the mealy bugs during preliminary fasting or feeding, acquisition access time, post-acquisition fasting or feeding, and the inoculation access time. Other papers also discuss the involvement of insects in transmitting bacterial and fungal pathogens; the authors list unresolved issues such as the role of insects in overwintering of bacterial pathogens or the association of the fungus with a particular vector. One author describes some suspected fungi transmission such as the pea stem necrosis virus, red clover necrotic mosaic virus, and the tomato bushy stunt virus. Another paper examines the fate of plant viruses in mite vectors and convectors particularly the viruses found in wheat, barley, or brome grass. Agriculturists, botanists, and researchers in the field of botany, conservation, and plant genealogy will find this book useful.
Globalization of the food supply has created conditions favorable for the emergence, reemergence, and spread of food-borne pathogens-compounding the challenge of anticipating, detecting, and effectively responding to food-borne threats to health. In the United States, food-borne agents affect 1 out of 6 individuals and cause approximately 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths each year. This figure likely represents just the tip of the iceberg, because it fails to account for the broad array of food-borne illnesses or for their wide-ranging repercussions for consumers, government, and the food industry-both domestically and internationally. A One Health approach to food safety may hold the promise of harnessing and integrating the expertise and resources from across the spectrum of multiple health domains including the human and veterinary medical and plant pathology communities with those of the wildlife and aquatic health and ecology communities. The IOM's Forum on Microbial Threats hosted a public workshop on December 13 and 14, 2011 that examined issues critical to the protection of the nation's food supply. The workshop explored existing knowledge and unanswered questions on the nature and extent of food-borne threats to health. Participants discussed the globalization of the U.S. food supply and the burden of illness associated with foodborne threats to health; considered the spectrum of food-borne threats as well as illustrative case studies; reviewed existing research, policies, and practices to prevent and mitigate foodborne threats; and, identified opportunities to reduce future threats to the nation's food supply through the use of a "One Health" approach to food safety. Improving Food Safety Through a One Health Approach: Workshop Summary covers the events of the workshop and explains the recommendations for future related workshops.