There is growing awareness that important environmental transformations are catalysed, mediated and influenced by microorganisms, and geomicrobiology can be defined as the influence of microorganisms on geologic processes. This is probably the most rapidly growing area of microbiology at present, combining environmental and molecular microbiology together with significant areas of mineralogy, geochemistry and hydrology. This volume focuses on the function of microorganisms in the environment and their influence on 'global' processes. It will include state-of-the art approaches to visualisation, culture and identification, community interactions and gene transfer, and diversity studies in relation to key processes. This overview for researchers and graduate students will represent environmental microbiology in its broadest sense and help to promote exciting collaborations between microbiologists and those in complementary physical and chemical disciplines.
Written by leading experts in their respective fields, Principles and Applications of Soil Microbiology 3e, provides a comprehensive, balanced introduction to soil microbiology, and captures the rapid advances in the field such as recent discoveries regarding habitats and organisms, microbially mediated transformations, and applied environmental topics. Carefully edited for ease of reading, it aids users by providing an excellent multi-authored reference, the type of book that is continually used in the field. Background information is provided in the first part of the book for ease of comprehension. The following chapters then describe such fundamental topics as soil environment and microbial processes, microbial groups and their interactions, and thoroughly addresses critical nutrient cycles and important environmental and agricultural applications. An excellent textbook and desk reference, Principles and Applications of Soil Microbiology, 3e, provides readers with broad, foundational coverage of the vast array of microorganisms that live in soil and the major biogeochemical processes they control. Soil scientists, environmental scientists, and others, including soil health and conservation specialists, will find this material invaluable for understanding the amazingly diverse world of soil microbiology, managing agricultural and environmental systems, and formulating environmental policy. - Includes discussion of major microbial methods, embedded within topical chapters - Includes information boxes and case studies throughout the text to illustrate major concepts and connect fundamental knowledge with potential applications - Study questions at the end of each chapter allow readers to evaluate their understanding of the materials
The fourth edition of Soil Microbiology, Ecology and Biochemistry updates this widely used reference as the study and understanding of soil biota, their function, and the dynamics of soil organic matter has been revolutionized by molecular and instrumental techniques, and information technology. Knowledge of soil microbiology, ecology and biochemistry is central to our understanding of organisms and their processes and interactions with their environment. In a time of great global change and increased emphasis on biodiversity and food security, soil microbiology and ecology has become an increasingly important topic. Revised by a group of world-renowned authors in many institutions and disciplines, this work relates the breakthroughs in knowledge in this important field to its history as well as future applications. The new edition provides readable, practical, impactful information for its many applied and fundamental disciplines. Professionals turn to this text as a reference for fundamental knowledge in their field or to inform management practices. - New section on "Methods in Studying Soil Organic Matter Formation and Nutrient Dynamics" to balance the two successful chapters on microbial and physiological methodology - Includes expanded information on soil interactions with organisms involved in human and plant disease - Improved readability and integration for an ever-widening audience in his field - Integrated concepts related to soil biota, diversity, and function allow readers in multiple disciplines to understand the complex soil biota and their function
Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability
Microbes, or microorganisms, are tiny living beings that cannot be seen by the naked eye. These little guys are one of the oldest living things on Earth, and are extremely diverse in how they live and what they can do. They, for example, can live in many places, from the freezing iciness of glaciers, to the insides of other organisms, like termites or humans. Since they are virtually everywhere, microorganisms are essential for the biological processes that allow plants and animals to breath, eat and thrive. But how were they able to endure, adapt and flourish constantly over millions of years? The secrets of their success are still within them, coded into their genomes, waiting for us to understand them. Now, genomes, bacterial or otherwise, are the repositories of life. These repositories store almost every bit of information that allows living beings to live in discrete units called genes. Genes are strung together like the sentences in a book, interacting with each other to create meaning, saving the story of that particular book—or that particular living organism’s genome—so it can be copied, modified, corrected or enhanced, and then passed on to new generations. After many, many years of studying these “books,” we have learned to read and understand them, thanks to the technological innovations of the last decade. Nowadays, it is possible to get the full genomic sequence of practically any organism, and compare it with thousands of genomes from other organisms, letting us peek at the secrets that make each organism who it is. With the current technical abilities, the challenge now is not to obtain the information but to interpret all those chunks of the story. Finding ways to untangle the riddles of genomic information is the work of Genomics, the science that allows us to obtain, analyze and prioritize information among the many stories that we sequence everyday. To do this, Genomics draws from many sciences, like mathematics and computing sciences, making it a truly interdisciplinary endeavor. Right now , genomics are one of the most important areas of biology, and many, if not most, of current biological studies use at least a little bit of genomics. For example, genomics can be used to identify a microbe and give it a name, to learn about what types of things it can do or places it can live, and to figure out the mechanisms that enable it to survive under particular conditions. Here, we will dwell on some of the basic questions about microbial adaptation, biodiversity, and their relationships with other living beings using a genomic approach. We will also focus on the environment, trying to understand how such tiny little creatures are capable of solving their daily problems, and how they can alter the places in which they live. Learning about these mechanisms will not only provide us with knowledge about life in general but will also help us to understand these organisms as a fundamental component of our ecosystem, including their harmful and beneficial effects in all aspects of our daily life, which can be translated into useful applications in almost any imaginable way.
People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.
Microbes and their biosynthetic capabilities have been invaluable in finding solutions for several intractable problems mankind has encountered in maintaining the quality of the environment. They have, for example, been used to positive effect in human and animal health, genetic engineering, environmental protection, and municipal and industrial waste treatment. Microorganisms have enabled feasible and cost-effective responses which would have been impossible via straightforward chemical or physical engineering methods. Microbial technologies have of late been applied to a range of environmental problems, with considerable success. This survey of recent scientific progress in usefully applying microbes to both environmental management and biotechnology is informed by acknowledgement of the polluting effects on the world around us of soil erosion, the unwanted migration of sediments, chemical fertilizers and pesticides, and the improper treatment of human and animal wastes. These harmful phenomena have resulted in serious environmental and social problems around the world, problems which require us to look for solutions elsewhere than in established physical and chemical technologies. Often the answer lies in hybrid applications in which microbial methods are combined with physical and chemical ones. When we remember that these highly effective microorganisms, cultured for a variety of applications, are but a tiny fraction of those to be found in the world around us, we realize the vastness of the untapped and beneficial potential of microorganisms. At present, comprehending the diversity of hitherto uncultured microbes involves the application of metagenomics, with several novel microbial species having been discovered using culture-independent approaches. Edited by recognized leaders in the field, this penetrating assessment of our progress to date in deploying microorganisms to the advantage of environmental management and biotechnology will be widely welcomed.
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).