Methods of Quantum Field Theory in Statistical Physics

Methods of Quantum Field Theory in Statistical Physics

Author: A. A. Abrikosov

Publisher: Courier Corporation

Published: 2012-05-04

Total Pages: 383

ISBN-13: 0486140156

DOWNLOAD EBOOK

This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as "a classic text on field theoretic methods in statistical physics."


Algebraic Methods in Statistical Mechanics and Quantum Field Theory

Algebraic Methods in Statistical Mechanics and Quantum Field Theory

Author: Dr. Gérard G. Emch

Publisher: Courier Corporation

Published: 2014-08-04

Total Pages: 336

ISBN-13: 0486151719

DOWNLOAD EBOOK

This systematic algebraic approach offers a careful formulation of the problems' physical motivations as well as self-contained descriptions of the mathematical methods for arriving at solutions. 1972 edition.


Functional Methods in Quantum Field Theory and Statistical Physics

Functional Methods in Quantum Field Theory and Statistical Physics

Author: A.N. Vasiliev

Publisher: CRC Press

Published: 1998-07-28

Total Pages: 336

ISBN-13: 9789056990350

DOWNLOAD EBOOK

Providing a systematic introduction to the techniques which are fundamental to quantum field theory, this book pays special attention to the use of these techniques in a wide variety of areas, including ordinary quantum mechanics, quantum mechanics in the second-quantized formulation, relativistic quantum field theory, Euclidean field theory, quantum statistics at finite temperature, and the classical statistics of nonideal gas and spin systems. The extended chapter on variational methods and functional Legendre transformations contains completely original material.


Functional Methods in Quantum Field Theory and Statistical Physics

Functional Methods in Quantum Field Theory and Statistical Physics

Author: A.N. Vasiliev

Publisher: Routledge

Published: 2019-01-22

Total Pages: 320

ISBN-13: 1351446819

DOWNLOAD EBOOK

Providing a systematic introduction to the techniques which are fundamental to quantum field theory, this book pays special attention to the use of these techniques in a wide variety of areas, including ordinary quantum mechanics, quantum mechanics in the second-quantized formulation, relativistic quantum field theory, Euclidean field theory, quant


Statistical Approach to Quantum Field Theory

Statistical Approach to Quantum Field Theory

Author: Andreas Wipf

Publisher: Springer Nature

Published: 2021-10-25

Total Pages: 568

ISBN-13: 3030832635

DOWNLOAD EBOOK

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.


Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems

Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems

Author: Bohdan I Lev

Publisher: World Scientific

Published: 2021-02-18

Total Pages: 352

ISBN-13: 9811229996

DOWNLOAD EBOOK

This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states.The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications.To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).


The Large N Expansion In Quantum Field Theory And Statistical Physics

The Large N Expansion In Quantum Field Theory And Statistical Physics

Author: Edouard Brezin

Publisher: World Scientific

Published: 1993-08-31

Total Pages: 1149

ISBN-13: 981450663X

DOWNLOAD EBOOK

This book contains an edited comprehensive collection of reprints on the subject of the large N limit as applied to a wide spectrum of problems in quantum field theory and statistical mechanics. The topics include (1) Spin Systems; (2) Large N Limit of Gauge Theories; (3) Two-Dimensional QCD; (4) Exact Results on Planar Perturbation Series and the Nature of the 1/N Series; (5) Schwinger-Dyson Equations Approach; (6) QCD Phenomenological Lagrangians and the Large N Limit; (7) Other Approaches to Large N: Eguchi-Kawai Model, Collective Fields and Numerical Methods; (8) Matrix Models; (9) Two-Dimensional Gravity and String Theory.