Data Fusion Methodology and Applications

Data Fusion Methodology and Applications

Author: Marina Cocchi

Publisher: Elsevier

Published: 2019-05-11

Total Pages: 398

ISBN-13: 0444639853

DOWNLOAD EBOOK

Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. - Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery - Includes comprehensible, theoretical chapters written for large and diverse audiences - Provides a wealth of selected application to the topics included


Methods for Handling Imperfect Spatial Information

Methods for Handling Imperfect Spatial Information

Author: Robert Jeansoulin

Publisher: Springer Science & Business Media

Published: 2010-10-04

Total Pages: 380

ISBN-13: 3642147542

DOWNLOAD EBOOK

Spatial information is pervaded by uncertainty. Indeed, geographical data is often obtained by an imperfect interpretation of remote sensing images, while people attach ill-defined or ambiguous labels to places and their properties. As another example, medical images are often the result of measurements by imprecise sensors (e.g. MRI scans). Moreover, by processing spatial information in real-world applications, additional uncertainty is introduced, e.g. due to the use of interpolation/extrapolation techniques or to conflicts that are detected in an information fusion step. To the best of our knowledge, this book presents the first overview of spatial uncertainty which goes beyond the setting of geographical information systems. Uncertainty issues are especially addressed from a representation and reasoning point of view. In particular, the book consists of 14 chapters, which are clustered around three central topics. The first of these topics is about the uncertainty in meaning of linguistic descriptions of spatial scenes. Second, the issue of reasoning about spatial relations and dealing with inconsistency in information merging is studied. Finally, interpolation and prediction of spatial phenomena are investigated, both at the methodological level and from an application-oriented perspective. The concept of uncertainty by itself is understood in a broad sense, including both quantitative and more qualitative approaches, dealing with variability, epistemic uncertainty, as well as with vagueness of terms.


Principles of Statistical Data Handling

Principles of Statistical Data Handling

Author: Fred Davidson

Publisher: SAGE Publications, Incorporated

Published: 1996-04-09

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

Principles of Statistical Data Handling is designed to help readers understand the principles of data handling so that they can make better use of computer data in research or study.


Statistical Methods for Handling Incomplete Data

Statistical Methods for Handling Incomplete Data

Author: Jae Kwang Kim

Publisher: CRC Press

Published: 2021-11-19

Total Pages: 380

ISBN-13: 1000466299

DOWNLOAD EBOOK

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data. Features Uses the mean score equation as a building block for developing the theory for missing data analysis Provides comprehensive coverage of computational techniques for missing data analysis Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data Describes a survey sampling application Updated with a new chapter on Data Integration Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.


Hyperspectral Imaging

Hyperspectral Imaging

Author:

Publisher: Elsevier

Published: 2019-09-29

Total Pages: 802

ISBN-13: 0444639780

DOWNLOAD EBOOK

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments


Data Analysis Methods in Physical Oceanography

Data Analysis Methods in Physical Oceanography

Author: Richard E. Thomson

Publisher: Elsevier

Published: 2001-04-03

Total Pages: 654

ISBN-13: 0080477003

DOWNLOAD EBOOK

Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999


Artificial Intelligent Methods for Handling Spatial Data

Artificial Intelligent Methods for Handling Spatial Data

Author: Jörg Verstraete

Publisher: Springer

Published: 2018-08-31

Total Pages: 137

ISBN-13: 3030002381

DOWNLOAD EBOOK

This book provides readers with an insight into the development of a novel method for regridding gridded spatial data, an operation required to perform the map overlay operation and apply map algebra when processing spatial data. It introduces the necessary concepts from spatial data processing and fuzzy rulebase systems and describes the issues experienced when using current regridding algorithms. The main focus of the book is on describing the different modifications needed to make the problem compatible with fuzzy rulebases. It offers a number of examples of out-of-the box thinking to handle aspects such as rulebase construction, defuzzification, spatial data comparison, etc. At first, the emphasis is put on the newly developed method, and additional datasets containing information on the underlying spatial distribution of the data are identified. After this, an artificial intelligent system (in the form of a fuzzy inference system) is constructed using this knowledge and then applied on the input data to perform the regridding. The book offers an example of how an apparently simple problem can pose many different challenges, even when trying to solve it with existing soft computing technologies. The workflow and solutions to solve these challenges are universal and may therefore be broadly applied into other contexts.


Handling Qualitative Data

Handling Qualitative Data

Author: Lyn Richards

Publisher: SAGE

Published: 2009-11-18

Total Pages: 233

ISBN-13: 1446242900

DOWNLOAD EBOOK

Lecturers, click here to request an e-inspection copy of this text This new edition of Lyn Richards' best-selling book provides an accessible introduction to qualitative research for students and practitioners. Recognizing that for many new researchers dealing with data is the main point of departure, this book helps them to acquire a progressive understanding of the skills and methodological issues that are central to qualitative research. Lyn Richards provides clear and pragmatic guidance on how to handle, reflect on and get results from small amounts of data, while at the same time showing how a consideration of methods and their philosophical underpinnings informs how we should best handle our data. This book also covers all the processes of making, meeting, sorting, coding, documenting and exploring qualitative data, smoothly integrating software use and the discussion of the main challenges that readers are likely to encounter. It guides novice researchers to achieve valid and useful outcomes from qualitative analysis, and to ensure they do justice to their data. This second edition features: - Increased coverage of issues about the researcher's relation to their data and ethical implications - An expanded section on preparing for data collection and reflecting on the nature of data. There is also a brand new website, offering: - Live, detailed case studies of qualitative methods in practice, linking to publications and illustrative material. Researchers tell the stories of projects, from design, through what was actually done with the data, to how analysis was achieved and reported; - A software guide with links to information and tutorials in several products.


Fundamentals and Analytical Applications of Multiway Calibration

Fundamentals and Analytical Applications of Multiway Calibration

Author:

Publisher: Elsevier

Published: 2015-08-10

Total Pages: 612

ISBN-13: 0444635378

DOWNLOAD EBOOK

Fundamentals and Analytical Applications of Multi-Way Calibration presents researchers with a set of effective tools they can use to obtain the maximum information from instrumental data. It includes the most advanced techniques, methods, and algorithms related to multi-way calibration and the ways they can be applied to solve actual analytical problems. This book provides a comprehensive coverage of the main aspects of multi-way analysis, including fundamentals and selected applications of chemometrics that can resolve complex analytical chemistry problems through the use of multi-way calibration. Includes the most advanced techniques, methods, and algorithms related to multi-way calibration and the ways they can be applied to solve actual analytical problems Presents researchers with a set of effective tools they can use to obtain the maximum information from instrumental data Provides comprehensive coverage of the main aspects of multi-way analysis, including fundamentals and selected applications of chemometrics


Soft Methods for Handling Variability and Imprecision

Soft Methods for Handling Variability and Imprecision

Author: Didier Dubois

Publisher: Springer Science & Business Media

Published: 2008-10-01

Total Pages: 436

ISBN-13: 3540850279

DOWNLOAD EBOOK

Probability theory has been the only well-founded theory of uncertainty for a long time. It was viewed either as a powerful tool for modelling random phenomena, or as a rational approach to the notion of degree of belief. During the last thirty years, in areas centered around decision theory, artificial intelligence and information processing, numerous approaches extending or orthogonal to the existing theory of probability and mathematical statistics have come to the front. The common feature of those attempts is to allow for softer or wider frameworks for taking into account the incompleteness or imprecision of information. Many of these approaches come down to blending interval or fuzzy interval analysis with probabilistic methods. This book gathers contributions to the 4th International Conference on Soft methods in Probability and Statistics. Its aim is to present recent results illustrating such new trends that enlarge the statistical and uncertainty modeling traditions, towards the handling of incomplete or subjective information. It covers a broad scope ranging from philosophical and mathematical underpinnings of new uncertainty theories, with a stress on their impact in the area of statistics and data analysis, to numerical methods and applications to environmental risk analysis and mechanical engineering. A unique feature of this collection is to establish a dialogue between fuzzy random variables and imprecise probability theories.