Methods of Algebraic Geometry: Volume 1

Methods of Algebraic Geometry: Volume 1

Author: W. V. D. Hodge

Publisher: Cambridge University Press

Published: 1994-03-10

Total Pages: 454

ISBN-13: 9780521469005

DOWNLOAD EBOOK

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.


Methods of Algebraic Geometry: Volume 3

Methods of Algebraic Geometry: Volume 3

Author: W. V. D. Hodge

Publisher: Cambridge University Press

Published: 1994-05-19

Total Pages: 350

ISBN-13: 0521467756

DOWNLOAD EBOOK

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.


Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I

Author: Peter Falb

Publisher: Springer

Published: 2018-08-25

Total Pages: 211

ISBN-13: 3319980262

DOWNLOAD EBOOK

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik


Polyhedral and Algebraic Methods in Computational Geometry

Polyhedral and Algebraic Methods in Computational Geometry

Author: Michael Joswig

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 251

ISBN-13: 1447148177

DOWNLOAD EBOOK

Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.


Effective Methods in Algebraic Geometry

Effective Methods in Algebraic Geometry

Author: Teo Mora

Publisher: Springer Science & Business Media

Published: 1991

Total Pages: 524

ISBN-13: 9780817635466

DOWNLOAD EBOOK

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").


A Primer of Algebraic Geometry

A Primer of Algebraic Geometry

Author: Huishi Li

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 393

ISBN-13: 1482270331

DOWNLOAD EBOOK

"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."


Methods of Algebraic Geometry: Volume 2

Methods of Algebraic Geometry: Volume 2

Author: W. V. D. Hodge

Publisher: Cambridge University Press

Published: 1994-05-19

Total Pages: 408

ISBN-13: 0521469015

DOWNLOAD EBOOK

All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.


Geometric Methods in Algebra and Number Theory

Geometric Methods in Algebra and Number Theory

Author: Fedor Bogomolov

Publisher: Springer Science & Business Media

Published: 2006-06-22

Total Pages: 365

ISBN-13: 0817644172

DOWNLOAD EBOOK

* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry


Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra

Author: Siegfried Bosch

Publisher: Springer Nature

Published: 2022-04-22

Total Pages: 504

ISBN-13: 1447175239

DOWNLOAD EBOOK

Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.


Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry

Author: Wolmer Vasconcelos

Publisher: Springer Science & Business Media

Published: 2004-05-18

Total Pages: 432

ISBN-13: 9783540213116

DOWNLOAD EBOOK

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.