This book focuses on the advantages and disadvantages of each of the commonly used quantitative proteomic methods in terms of accuracy, sensitivity, and reproducibility. It also concentrates on the effective applications of these methods that resulted in many discoveries of the role of the proteins expressed in living cells and biological fluids. The first part of the book focuses on the description of advantages and disadvantages of each of the commonly used quantitative proteomic methods in terms of accuracy, sensitivity, and, especially, reproducibility. The second part of the book focuses on providing concise descriptions of the effective applications of these methods to demonstrate how they have resulted in many important discoveries of the roles of the proteins expressed in living cells.
Following the succesful publication of "Proteome and Protein Analysis" in 2000, which was based on a former MPSA (Methods in Protein Structure Analysis) conference, Methods in Proteome and Protein Analysis presents the most interesting papers from the 14th MPSA meeting. Major topics include: protein and peptide sample preparation and separation; new reagent for protein sequence analysis; mass spectrometry in protein research; analysis of posttranslational modification; protein-protein interaction using MALDI-MS; manipulation of genome or functional compositon trap; structure-function correlation study using optical biosensors of microcolorimetrical techniques; structural proteomics as NMR or fluorescence polarization study; the classification and prediction of structure or functional sites; in silico analysis of proteins and proteomes; increasing throughput and data quality for proteomics.
In this, the post-genomic age, our knowledge of biological systems continues to expand and progress. As the research becomes more focused, so too does the data. Genomic research progresses to proteomics and brings us to a deeper understanding of the behavior and function of protein clusters. And now proteomics gives way to neuroproteomics as we beg
Protein modifications and changes made to them, as well as the quantities of expressed proteins, can define the various functional stages of the cell. Accordingly, perturbations can lead to various diseases and disorders. As a result, it has become paramount to be able to detect and monitor post-translational modifications and to measure the abundance of proteins within the cell with extreme sensitivity. While protein identification is an almost routine requirement nowadays, reliable techniques for quantifying unmodified proteins (including those that escape detection under standard conditions, such as protein isoforms and membrane proteins) is not routine. Quantitative Methods in Proteomics gives a detailed survey of topics and methods on the principles underlying modern protein analysis, from statistical issues when planning proteomics experiments, to gel-based and mass spectrometry-based applications. The quantification of post-translational modifications is also addressed, followed by the “hot” topics of software and data analysis, as well as various overview chapters which provide a comprehensive overview of existing methods in quantitative proteomics. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Quantitative Methods in Proteomics serves as a comprehensive and competent overview of the important and still growing field of quantitative proteomics.
With the completion of sequencing projects and the advancement of a- lytical tools for protein identification, proteomics—the study of the expressed part of the genome—has become a major region of the burgeoning field of functional genomics. High-resolution 2-D gels can reveal virtually all p- teins present in a cell or tissue at any given time, including posttranslationally modified proteins. Changes in the expression and structure of most cellular proteins caused by differentiation or external stimuli can be displayed and eventually identified using 2-D protein gels. 2-D Proteome Analysis Protocols covers all aspects of the use of 2-D protein electrophoresis for the analysis of biological problems. The contri- tors include many of the leaders in the fields of biochemistry and analytical chemistry who were instrumental in the development of high-resolution 2-D gels, immobilized pH gradients, computer analysis, and mass spectromet- based protein identification methodologies. This book is intended as a benchtop manual and guide both for novices to 2-D gels and for those aficionados who wish to try the newer techniques. Any group using protein biochemistry—especially in the fields of molecular biology, biochemistry, microbiology, and cell biology—should find this book eminently useful. 2-D Proteome Analysis Protocols takes the researcher through the c- plete process of working with 2-D protein gels from making the protein - tract to finally identifying the proteins of interest. It includes protocols for generating 2-D protein extracts from most of the standard model organisms, including bacteria, yeast, nematode, Drosophila, plants, mouse, and human.
PROVIDES STRATEGIES AND CONCEPTS FOR UNDERSTANDING CHEMICAL PROTEOMICS, AND ANALYZING PROTEIN FUNCTIONS, MODIFICATIONS, AND INTERACTIONS—EMPHASIZING MASS SPECTROMETRY THROUGHOUT Covering mass spectrometry for chemical proteomics, this book helps readers understand analytical strategies behind protein functions, their modifications and interactions, and applications in drug discovery. It provides a basic overview and presents concepts in chemical proteomics through three angles: Strategies, Technical Advances, and Applications. Chapters cover those many technical advances and applications in drug discovery, from target identification to validation and potential treatments. The first section of Mass Spectrometry-Based Chemical Proteomics starts by reviewing basic methods and recent advances in mass spectrometry for proteomics, including shotgun proteomics, quantitative proteomics, and data analyses. The next section covers a variety of techniques and strategies coupling chemical probes to MS-based proteomics to provide functional insights into the proteome. In the last section, it focuses on using chemical strategies to study protein post-translational modifications and high-order structures. Summarizes chemical proteomics, up-to-date concepts, analysis, and target validation Covers fundamentals and strategies, including the profiling of enzyme activities and protein-drug interactions Explains technical advances in the field and describes on shotgun proteomics, quantitative proteomics, and corresponding methods of software and database usage for proteomics Includes a wide variety of applications in drug discovery, from kinase inhibitors and intracellular drug targets to the chemoproteomics analysis of natural products Addresses an important tool in small molecule drug discovery, appealing to both academia and the pharmaceutical industry Mass Spectrometry-Based Chemical Proteomics is an excellent source of information for readers in both academia and industry in a variety of fields, including pharmaceutical sciences, drug discovery, molecular biology, bioinformatics, and analytical sciences.
Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution. The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis and modeling. This new standard effectively eliminates the differing methodologies used in studies and creates a unified approach. Readers will learn the advantages and disadvantages of the various techniques discussed, as well as potential difficulties inherent to all steps in the biomarker discovery process. A vital resource for biochemists, biologists, analytical chemists, bioanalytical chemists, clinical and medical technicians, researchers in pharmaceuticals, and graduate students, Proteomic and Metabolomic Approaches to Biomarker Discovery provides the information needed to reduce clinical error in the execution of research. - Describes the use of biomarkers to reduce clinical errors in research - Includes techniques from a range of biomarker discoveries - Covers all steps involved in biomarker discovery, from study design to study execution
Driven by the widespread growth of proteomic practices, protein separation techniques have been refined to minimize variability, optimize particular applications, and adapt to user preferences in the analysis of proteins. Separation Methods in Proteomics provides a comprehensive examination of all major separation techniques for proteomic
This volume aims to provide protocols on a wide range of biochemical methods, analytical approaches, and bioinformatics tools developed to analyze the proteome. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Proteomics: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Hands-on researchers describe in step-by-step detail 73 proven laboratory methods and bioinformatics tools essential for analysis of the proteome. These cutting-edge techniques address such important tasks as sample preparation, 2D-PAGE, gel staining, mass spectrometry, and post-translational modification. There are also readily reproducible methods for protein expression profiling, identifying protein-protein interactions, and protein chip technology, as well as a range of newly developed methodologies for determining the structure and function of a protein. The bioinformatics tools include those for analyzing 2D-GEL patterns, protein modeling, and protein identification. All laboratory-based protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.