Calpain Methods and Protocols

Calpain Methods and Protocols

Author: John S. Elce

Publisher: Springer Science & Business Media

Published: 2008-02-05

Total Pages: 340

ISBN-13: 1592590500

DOWNLOAD EBOOK

The purpose of Calpain Methods and Protocols is quite straightf- ward: it is to present the actual experimental methods used in many different laboratories for the study of calpain. It will provide the vital experimental detail, and the discussion of possible pitfalls, for which the standard journals no longer provide space. This will make it as easy as possible for investi- tors interested in calpain to adopt established methods without repeating old mistakes, and to adapt and apply these methods in novel approaches to the many outstanding calpain questions. These questions range from purely biochemical problems of protein structure and enzyme regulation at the molecular level, through large areas of cell biology, to applied and clinical aspects of calpain function in human d- ease. Within this panoply of topics, a wide range of investigators will find many fascinating and as yet unanswered questions about calpain. Calpain Methods and Protocols will provide instant access to many essential te- niques, while saving them the time and effort involved in developing a new method. In addition to questions relating to the normal physiological roles of the calpains, there is considerable evidence that inappropriate calpain activity may have pathological effects in many tissues, for example, following ischemia. This provides a major stimulus for the development of specific calpain inhi- tors for therapeutic purposes, and for the development of methods to evaluate such inhibitors.


Protein Folding

Protein Folding

Author: Victor Muñoz

Publisher: Humana

Published: 2021-11-30

Total Pages: 419

ISBN-13: 9781071617151

DOWNLOAD EBOOK

This volume provides comprehensive protocols on experimental and computational methods that are used to study probe protein folding reactions and mechanisms. Chapters divided into five parts detail protein engineering, protein chemistry, experimental approaches to investigate the thermodynamics and kinetics of protein folding transitions, probe protein folding at the single molecule, analysis and interpretation of computer simulations, procedures and tools for the prediction of protein folding properties. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Folding: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field.


Connexin Methods and Protocols

Connexin Methods and Protocols

Author: Roberto Bruzzone

Publisher: Springer Science & Business Media

Published: 2008-02-05

Total Pages: 495

ISBN-13: 1592590438

DOWNLOAD EBOOK

Direct cell–cell communication is a common property of multicellular organisms that is achieved through membrane channels which are organized in gap junctions. The protein subunits of these intercellular channels, the connexins, form a multigene family that has been investigated in great detail in recent years. It has now become clear that, in different tissues, connexins speak several languages that control specific cellular functions. This progress has been made possible by the availability of new molecular tools and the improvement of basic techniques for the study of membrane channels, as well as by the use of genetic approaches to study protein function in vivo. More important, connexins have gained visibility because mutations in some connexin genes have been found to be linked to human genetic disorders. Connexin Methods and Protocols presents in detail a collection of te- niques currently used to study the cellular and molecular biology of connexins and their physiological properties. The field of gap junctions and connexin research has always been characterized by a multidisciplinary approach c- bining morphology, biochemistry, biophysics, and cellular and molecular biology. This book provides a series of cutting-edge protocols and includes a large spectrum of practical methods that are available to investigate the fu- tion of connexin channels. Connexin Methods and Protocols is divided into three main parts.


Bioinformatics Methods and Protocols

Bioinformatics Methods and Protocols

Author: Stephen Misener

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 495

ISBN-13: 1592591922

DOWNLOAD EBOOK

Computers have become an essential component of modern biology. They help to manage the vast and increasing amount of biological data and continue to play an integral role in the discovery of new biological relationships. This in silico approach to biology has helped to reshape the modern biological sciences. With the biological revolution now among us, it is imperative that each scientist develop and hone today’s bioinformatics skills, if only at a rudimentary level. Bioinformatics Methods and Protocols was conceived as part of the Methods in Molecular Biology series to meet this challenge and to provide the experienced user with useful tips and an up-to-date overview of current developments. It builds upon the foundation that was provided in the two-volume set published in 1994 entitled Computer Analysis of Sequence Data. We divided Bioinformatics Methods and Protocols into five parts, including a thorough survey of the basic sequence analysis software packages that are available at most institutions, as well as the design and implemen- tion of an essential introductory Bioinformatics course. In addition, we included sections describing specialized noncommercial software, databases, and other resources available as part of the World Wide Web and a stimul- ing discussion of some of the computational challenges biologists now face and likely future solutions.


Immunotoxin Methods and Protocols

Immunotoxin Methods and Protocols

Author: Walter A. Hall

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 305

ISBN-13: 1592591140

DOWNLOAD EBOOK

Immunotoxins represent a new class of human therapeutics that have widespread applications and a potential that has not yet been fully recognized since they were first conceived of by Paul Ehrlich in 1906. The majority of advances in the development and implementation of immunotoxins has occurred over the last 20 years. The reasons for this use of immunotoxins in basic science and clinical research are the powerful concurrent advances in genetic engineering and receptor physiology. Recombinant technology has allowed investigators to produce sufficient quantities of a homogeneous c- pound that allows clinical trials to be performed. The identification of specific receptors on malignant cell types has enabled scientists to generate immunotoxins that have had positive results in clinical trials. As more cellular targets are identified in coming years, additional trials will be conducted in different disease states affecting still larger patient populations. Modulation of the immune system to decrease the humoral response to immunotoxins may improve their overall efficacy. As increasingly more effective compounds are generated, it will be necessary to decrease the local and systemic toxicity - sociated with these agents, and methods for doing so are presently being - veloped. The work presented in Immunotoxin Methods and Protocols focuses on three specific areas of immunotoxin investigation that are being conducted by experts throughout the world. The first section describes the construction and development of a variety of immunotoxins.


Nuclease Methods and Protocols

Nuclease Methods and Protocols

Author: Catherine H. Schein

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 521

ISBN-13: 1592592333

DOWNLOAD EBOOK

Nucleases, enzymes that restructure or degrade nucleic acid polymers, are vital to the control of every area of metabolism. They range from “housekeeping” enzymes with broad substrate ranges to extremely specific tools (1). Many types of nucleases are used in lab protocols, and their commercial and clinical uses are expanding. The purpose of Nuclease Methods and Protocols is to introduce the reader to some we- characterized protein nucleases, and the methods used to determine their activity, structure, interaction with other molecules, and physiological role. Each chapter begins with a mini-review on a specific nuclease or a nuclease-related theme. Although many chapters cover several topics, they were arbitrarily divided into five parts: Part I, “Characterizing Nuclease Activity,” includes protocols and assays to determine general (processive, distributive) or specific mechanisms. Methods to assay nuclease products, identify cloned nucleases, and determine their physiological role are also included here. Part II, “Inhibitors and Activators of Nucleases,” summarizes assays for measuring the effects of other proteins and small molecules. Many of these inhibitors have clinical relevance. Part III, “Relating Nuclease Structure and Function,” provides an overview of methods to determine or model the 3-D structure of nucleases and their complexes with substrates and inhibitors. A 3-D structure can greatly aid the rational design of nucleases and inhibitors for specific purposes. Part IV, “Nucleases in the Clinic,” summarizes assays and protocols suitable for use with t- sues and for nuclease based therapeutics.


Cytoskeleton Methods and Protocols

Cytoskeleton Methods and Protocols

Author: Ray H. Gavin

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 286

ISBN-13: 1592590519

DOWNLOAD EBOOK

Over the past two decades experimental studies have solidified the int- pretation of the cytoskeleton as a highly dynamic network of microtubules, actin microfilaments, intermediate filaments, and myosin filaments. Rather than a network of disparate fibers, these polymers are often interconnected and display synergy, which is the combined action of two or more cytoskeletal polymers to achieve a specific cellular structure or function. Cross-commu- cation among cytoskeletal polymers is thought to be achieved through cytoskeletal polymer accessory proteins and molecular motors that bind two or more cytoskeletal polymers. Development of the modern concept of the cytoskeleton is a direct o- growth of advances in experimental tools and reagents that are available to cell and molecular biologists. Technological advances and refinements in cell imaging have made it possible to selectively image a single cytoskeletal po- mer and monitor its dynamics through the use of fluorescence probes in vitro and in vivo. Two decades ago, cytoskeletal research was limited to a few perturbation reagents that included colchicine and cytochalasin. Today, the perturbation arsenal has expanded to a highly selective group of reagents that includes Taxol, nocodazole, benomyl, latrunculin, jasplakinolide, and such endogenous proteins as gelsolin. These reagents enable the investigator to selectively perturb or destroy a cytoskeletal polymer while leaving other cytoskeletal polymers intact. Site-specific monoclonal antibodies that target a specific cytoskeletal polymer have proven to be highly selective affinity tools for cytoskeletal research.


Molecular Methods in Developmental Biology

Molecular Methods in Developmental Biology

Author: Matt Guille

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 222

ISBN-13: 1592596789

DOWNLOAD EBOOK

The process whereby a single cell, the fertilized egg, develops into an adult has fascinated for centuries. Great progress in understanding that process, h- ever, has been made in the last two decades, when the techniques of molecular biology have become available to developmental biologists. By applying these techniques, the exact nature of many of the interactions responsible for forming the body pattern are now being revealed in detail. Such studies are a large, and it seems ever-expanding, part of most life-science groups. It is at newcomers to this field that this book is primarily aimed. A number of different plants and animals serve as common model org- isms for developmental studies. In Molecular Methods in Developmental Bi- ogy: Xenopus and Zebrafish, a range of the molecular methods applicable to two of these organisms are described, these are the South African clawed frog, Xenopus laevis, and the zebrafish, Brachydanio rerio. The embryos of both of these species develop rapidly and externally, making them particularly suited to investigations of early vertebrate development. However, both Xenopus and zebrafish have their own advantages and disadvantages. Xenopus have large, robust embryos that can be manipulated surgically with ease, but their pseudotetraploidy and long generation time make them unsuitable candidates for genetics. This disadvantage may soon be overcome by using the diploid Xenopus tropicalis, and early experiments are already underway. The transp- ent embryos of zebrafish render them well-suited for in situ hybridization and immunohistochemistry, and good for observing mutations in genetic screens.


Complement Methods and Protocols

Complement Methods and Protocols

Author: B. Paul Morgan

Publisher: Springer Science & Business Media

Published: 2008-02-05

Total Pages: 268

ISBN-13: 159259056X

DOWNLOAD EBOOK

The complement system, first described more than a century ago, was for many years the ugly duckling of the immunology world, but no more. Complement in recent years has blossomed into a fascinating and fast moving field of immediate relevance to clinical scientists in fields as diverse as transplantation biology, virology, and inflammation. Despite its emergence from the shadows, complement retains an unwarranted reputation for being “difficult.” This impression derives in large part from the superficially complicated nomenclature, a relic of the long and tortuous process of unraveling the system, of naming components in order of discovery rather than in a syst- atic manner. Once the barrier of nomenclature has been surmounted, then the true simplicity of the system becomes apparent. Complement comprises an activation system and a cytolytic system. The former has diverged to focus on complement to distinct targets—bacteria, - mune complexes, and others—so that texts now describe three activation pa- ways, closely related to one another, but each with some unique features. The cytolytic pathway is the same regardless of the activation process and kills cells by creating pores in the membrane. Complement plays an important role in killing bacteria and is essential for the proper handling of immune complexes. Problems occur when complement is activated in an inappropriate manner—the potent inflammation-inducing products of the cascade then cause unwanted tissue damage and destruction.