Cellular Electron Microscopy

Cellular Electron Microscopy

Author: J. Richard McIntosh

Publisher: Elsevier

Published: 2011-09-02

Total Pages: 878

ISBN-13: 0080475035

DOWNLOAD EBOOK

Recent advances in the imaging technique electron microscopy (EM) have improved the method, making it more reliable and rewarding, particularly in its description of three-dimensional detail. Cellular Electron Microscopy will help biologists from many disciplines understand modern EM and the value it might bring to their own work. The book's five sections deal with all major issues in EM of cells: specimen preparation, imaging in 3-D, imaging and understanding frozen-hydrated samples, labeling macromolecules, and analyzing EM data. Each chapter was written by scientists who are among the best in their field, and some chapters provide multiple points of view on the issues they discuss. Each section of the book is preceded by an introduction, which should help newcomers understand the subject. The book shows why many biologists believe that modern EM will forge the link between light microscopy of live cells and atomic resolution studies of isolated macromolecules, helping us toward the goal of an atomic resolution understanding of living systems. - Updates the numerous technological innovations that have improved the capabilities of electron microscopy - Provides timely coverage of the subject given the significant rise in the number of biologists using light microscopy to answer their questions and the natural limitations of this kind of imaging - Chapters include a balance of "how to", "so what" and "where next", providing the reader with both practical information, which is necessary to use these methods, and a sense of where the field is going


Magnetic Cell Separation

Magnetic Cell Separation

Author:

Publisher: Elsevier

Published: 2011-08-31

Total Pages: 473

ISBN-13: 0080553508

DOWNLOAD EBOOK

Cell separation is at the core of current methods in experimental biology and medicine. Its importance is illustrated by the large number of physical and biochemical principles that have been evaluated for application to cell separation. The development of cell separation methods is driven by the needs of biological and medical research, and the ever-increasing demands for sensitivity, selectivity, yield, timeliness and economy of the process. The interdisciplinary nature of research in this area and the volume of information available in research publications and conferences necessitates a basic description of the fundamental processes involved in magnetic cell separation that may help the user in navigating this wealth of information available online and in scientific publications. This book will appeal to researchers in many areas utilizing this technique, including those working in cell biology, clinical research, inorganic chemistry, biochemistry, chemical engineering, materials science, physics and electrical engineering. - Provides examples of how to calculate the volume magnetic susceptibility, a fundamental quantity for calculating the magnetic force acting on a cell, from various types of magnetic susceptibilities available in literature - Introduces the elements of magnetostatics as they apply to cell magnetization and the magnetization of magnetic micro- and nano- particles used for cell separation - Describes the parameters used to determine cell magnetophoresis


Yeast Protocols

Yeast Protocols

Author: Ivor Howell Evans

Publisher: Springer

Published: 1996

Total Pages: 433

ISBN-13: 9780896033191

DOWNLOAD EBOOK

Yeast Protocols contains many key techniques for studying the biology of yeasts at both the cellular and molecular levels. Working primarily from Saccharomyces cerevisiae, the expert contributors explain step-by-step how to successfully isolate, identify, and culture yeasts; the secrets of meiotic mapping; how to use PFGE in karyotyping and gene localization; the methods for purification and analysis of various cell components; and the construction and exploitation of genomic DNA clone banks. They also cover the latest methods for chromosome engineering, insertional mutagenesis by Ty elements, mRNA abundance and half-life measurements, the use of reporter gene systems, genotoxicity testing, and more. Yeast Protocols follows the widely applauded Humana Methods in Molecular Biology style: brief introductions putting the particular method in context, comprehensive lists of materials, cookbook style instructions, and troubleshooting notes to avoid common pitfalls and solve problems. The techniques can be used with confidence and success by both inexperienced newcomers and established researchers.


Computational Cell Biology

Computational Cell Biology

Author: Christopher P. Fall

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 484

ISBN-13: 0387224599

DOWNLOAD EBOOK

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.


Cell Imaging Techniques

Cell Imaging Techniques

Author: Douglas J. Taatjes

Publisher: Springer Science & Business Media

Published: 2008-02-04

Total Pages: 505

ISBN-13: 1592599931

DOWNLOAD EBOOK

A diverse collection of state-of-the-art methods for the microscopic imaging of cells and molecules. The authors cover a wide spectrum of complimentary techniques, including such methods as fluorescence microscopy, electron microscopy, atomic force microscopy, and laser scanning cytometry. Additional readily reproducible protocols on confocal scanning laser microscopy, quantitative computer-assisted image analysis, laser-capture microdissection, microarray image scanning, near-field scanning optical microscopy, and reflection contrast microscopy round out this eclectic collection of cutting-edge imaging techniques now available. The authors also discuss preparative methods for particles and cells by transmission electron microscopy.


Cell Biology by the Numbers

Cell Biology by the Numbers

Author: Ron Milo

Publisher: Garland Science

Published: 2015-12-07

Total Pages: 400

ISBN-13: 1317230698

DOWNLOAD EBOOK

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid


Basic Cell Culture Protocols

Basic Cell Culture Protocols

Author: Cheryl D. Helgason

Publisher: Humana Press

Published: 2012-11-20

Total Pages: 550

ISBN-13: 9781627031271

DOWNLOAD EBOOK

At some point in their careers, virtually every scientist and technician, as well as many medical professionals, regardless of their area of specialization have a need to utilize cell culture systems. Updating and significantly expanding upon the previous editions, Basic Cell Culture Protocols, Fourth Edition provides the novice cell culturist with sufficient information to perform the basic techniques, to ensure the health and identity of their cell lines, and to be able to isolate and culture specialized primary cell types. The intent of this extensive volume is to generate a valuable resource containing clear methodologies pertinent to current areas of investigation, rather than attempting to educate cell culturists on specific cell types or organ systems. Written in the highly successful Methods in Molecular BiologyTM, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and up-to-date, Basic Cell Culture Protocols, Fourth Edition compiles the essential techniques needed to approach this vital laboratory activity with full success.


Methods in Cellular Imaging

Methods in Cellular Imaging

Author: Ammasi Periasamy

Publisher: Springer

Published: 2013-05-27

Total Pages: 473

ISBN-13: 1461475139

DOWNLOAD EBOOK

Advances in technology have revolutionized the development of light microscopy techniques in biomedical research, thus improving visualization of the microstructure of cells and tissues under physiological conditions. Fluorescence microscopy methods are non-contact and non-invasive and provide high spatial and temporal resolution that other laboratory techniques cannot. This well-illustrated book targets graduate students and scientists who are new to the state-of-the-art fluorescence microscopy techniques used in biological and clinical imaging. It explains basic concepts and imaging procedures for wide-field, confocal, multiphoton excitation, fluorescence resonance energy transfer (FRET), lifetime imaging (FLIM), spectral imaging, fluorescence recovery after photobleaching (FRAP), optical tweezers, total internal reflection, high spatial resolution atomic force microscopy (AFM), and bioluminescence imaging for gene expression. The usage of these techniques in various biological applications, including calcium, pH, membrane potential, mitochondrial signaling, protein-protein interactions under various physiological conditions, and deep tissue imaging, is clearly presented. The authors describe the approaches to selecting epifluorescence microscopy, the detectors, and the image acquisition and processing software for different biological applications. Step-by-step directions on preparing different digital formats for light microscopy images on websites are also provided.