Fundamentals of Data Visualization

Fundamentals of Data Visualization

Author: Claus O. Wilke

Publisher: O'Reilly Media

Published: 2019-03-18

Total Pages: 390

ISBN-13: 1492031054

DOWNLOAD EBOOK

Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story


Implicit Visualization as Usable Science Visualizing Uncertainty as Decision Outcomes

Implicit Visualization as Usable Science Visualizing Uncertainty as Decision Outcomes

Author: Stephanie Deitrick

Publisher:

Published: 2013

Total Pages: 198

ISBN-13:

DOWNLOAD EBOOK

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize uncertainty and how decision makers frame uncertainty. To bridge this gap between practice and research, this dissertation explores uncertainty visualization as a means for reframing uncertainty in geographic information systems for use in policy decision support through three connected topics. Initially, this research explores visualizing the relationship between uncertainty and policy outcomes as a means for incorporating policymakers' decision frames when visualizing uncertainty. Outcome spaces are presented as a method to represent the effect of uncertainty on policy outcomes. This method of uncertainty visualization acts as an uncertainty map, representing all possible outcomes for specific policy decisions. This conceptual model incorporates two variables, but implicit uncertainty can be extended to multivariate representations. Subsequently, this work presented a new conceptualization of uncertainty, termed explicit and implicit, that integrates decision makers' framing of uncertainty into uncertainty visualization. Explicit uncertainty is seen as being separate from the policy outcomes, being described or displayed separately from the underlying data. In contrast, implicit uncertainty links uncertainty to decision outcomes, and while understood, it is not displayed separately from the data. The distinction between explicit and implicit is illustrated through several examples of uncertainty visualization founded in decision science theory. Lastly, the final topic assesses outcome spaces for communicating uncertainty though a human subject study. This study evaluates the effectiveness of the implicit uncertainty visualization method for communicating uncertainty for policy decision support. The results suggest that implicit uncertainty visualization successfully communicates uncertainty in results, even though uncertainty is not explicitly shown. Participants also found the implicit visualization effective for evaluating policy outcomes. Interestingly, participants also found the explicit uncertainty visualization to be effective for evaluating the policy outcomes, results that conflict with prior research.


Visualising Uncertainty

Visualising Uncertainty

Author: Polina Levontin

Publisher:

Published: 2020

Total Pages: 58

ISBN-13: 9781912802050

DOWNLOAD EBOOK

How should we understand and visualise the uncertainty inherent in decision-making? Using the right visualisation tools can improve our decisions. But this positive impact should never be taken for granted: visualisations can also have unexpected side-effects, and there is the risk that they can be misinterpreted or otherwise misused.


Anisotropy Across Fields and Scales

Anisotropy Across Fields and Scales

Author: Evren Özarslan

Publisher: Springer Nature

Published: 2021

Total Pages: 284

ISBN-13: 3030562158

DOWNLOAD EBOOK

This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.


Scientific Visualization

Scientific Visualization

Author: Charles D. Hansen

Publisher: Springer

Published: 2014-09-18

Total Pages: 397

ISBN-13: 1447164970

DOWNLOAD EBOOK

Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, students interested in both overview and advanced topics, and those interested in knowing more about the visualization process.


Uncertainty Quantification in Scientific Computing

Uncertainty Quantification in Scientific Computing

Author: Andrew Dienstfrey

Publisher: Springer

Published: 2014-09-20

Total Pages: 0

ISBN-13: 9783642432934

DOWNLOAD EBOOK

This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.


Expanding the Frontiers of Visual Analytics and Visualization

Expanding the Frontiers of Visual Analytics and Visualization

Author: John Dill

Publisher: Springer Science & Business Media

Published: 2012-04-17

Total Pages: 555

ISBN-13: 1447128044

DOWNLOAD EBOOK

The field of computer graphics combines display hardware, software, and interactive techniques in order to display and interact with data generated by applications. Visualization is concerned with exploring data and information graphically in such a way as to gain information from the data and determine significance. Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces. Expanding the Frontiers of Visual Analytics and Visualization provides a review of the state of the art in computer graphics, visualization, and visual analytics by researchers and developers who are closely involved in pioneering the latest advances in the field. It is a unique presentation of multi-disciplinary aspects in visualization and visual analytics, architecture and displays, augmented reality, the use of color, user interfaces and cognitive aspects, and technology transfer. It provides readers with insights into the latest developments in areas such as new displays and new display processors, new collaboration technologies, the role of visual, multimedia, and multimodal user interfaces, visual analysis at extreme scale, and adaptive visualization.


Topological Methods in Data Analysis and Visualization II

Topological Methods in Data Analysis and Visualization II

Author: Ronald Peikert

Publisher: Springer Science & Business Media

Published: 2012-01-10

Total Pages: 299

ISBN-13: 3642231756

DOWNLOAD EBOOK

When scientists analyze datasets in a search for underlying phenomena, patterns or causal factors, their first step is often an automatic or semi-automatic search for structures in the data. Of these feature-extraction methods, topological ones stand out due to their solid mathematical foundation. Topologically defined structures—as found in scalar, vector and tensor fields—have proven their merit in a wide range of scientific domains, and scientists have found them to be revealing in subjects such as physics, engineering, and medicine. Full of state-of-the-art research and contemporary hot topics in the subject, this volume is a selection of peer-reviewed papers originally presented at the fourth Workshop on Topology-Based Methods in Data Analysis and Visualization, TopoInVis 2011, held in Zurich, Switzerland. The workshop brought together many of the leading lights in the field for a mixture of formal presentations and discussion. One topic currently generating a great deal of interest, and explored in several chapters here, is the search for topological structures in time-dependent flows, and their relationship with Lagrangian coherent structures. Contributors also focus on discrete topologies of scalar and vector fields, and on persistence-based simplification, among other issues of note. The new research results included in this volume relate to all three key areas in data analysis—theory, algorithms and applications.