Introduction to Mathematical Logic

Introduction to Mathematical Logic

Author: Elliot Mendelsohn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 1461572886

DOWNLOAD EBOOK

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.


Mathematical Logic

Mathematical Logic

Author: George Tourlakis

Publisher: John Wiley & Sons

Published: 2011-03-01

Total Pages: 314

ISBN-13: 1118030699

DOWNLOAD EBOOK

A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.


Methods and Applications of Mathematical Logic

Methods and Applications of Mathematical Logic

Author: Walter Alexandre Carnielli

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 266

ISBN-13: 0821850768

DOWNLOAD EBOOK

Constitutes the proceedings of the Seventh Latin American Symposium on Mathematical Logic, held July 29-August 2, 1985, at the University of Campinas in Brazil. This book offers an introduction to the active lines of research in mathematical logic and emphasizes the connections to other fields - philosophy, computer science and probability theory.


Two Applications of Logic to Mathematics

Two Applications of Logic to Mathematics

Author: Gaisi Takeuti

Publisher: Princeton University Press

Published: 2015-03-08

Total Pages: 148

ISBN-13: 1400871344

DOWNLOAD EBOOK

Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that any arithmetical theorem proved in analytic number theory is a theorem in Peano's arithmetic. In doing so, the author applies Gentzen's cut elimination theorem. Although the results of Part One may be regarded as straightforward consequences of the spectral theorem in function analysis, the use of Boolean- valued models makes explicit and precise analogies used by analysts to lift results from ordinary analysis to operators on a Hilbert space. Essentially expository in nature, Part Two yields a general method for showing that analytic proofs of theorems in number theory can be replaced by elementary proofs. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method

Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method

Author: Carlo Cellucci

Publisher: Springer Science & Business Media

Published: 2013-10-09

Total Pages: 391

ISBN-13: 9400760914

DOWNLOAD EBOOK

This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without providing tools for discovering anything new. As a result, mathematical logic has had little impact on scientific practice. Therefore, this volume proposes a view of logic according to which logic is intended, first of all, to provide rules of discovery, that is, non-deductive rules for finding hypotheses to solve problems. This is essential if logic is to play any relevant role in mathematics, science and even philosophy. To comply with this view of logic, this volume formulates several rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition, and diagrams. A logic based on such rules is basically a logic of discovery, and involves a new view of the relation of logic to evolution, language, reason, method and knowledge, particularly mathematical knowledge. It also involves a new view of the relation of philosophy to knowledge. This book puts forward such new views, trying to open again many doors that the founding fathers of mathematical logic had closed historically. trigger


Mathematical Logic

Mathematical Logic

Author: H.-D. Ebbinghaus

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 290

ISBN-13: 1475723555

DOWNLOAD EBOOK

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.


The Elements of Mathematical Logic

The Elements of Mathematical Logic

Author: Paul C. Rosenbloom

Publisher:

Published: 1950

Total Pages: 234

ISBN-13:

DOWNLOAD EBOOK

"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.


A Concise Introduction to Mathematical Logic

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer

Published: 2010-07-01

Total Pages: 337

ISBN-13: 1441912215

DOWNLOAD EBOOK

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.


Popular Lectures on Mathematical Logic

Popular Lectures on Mathematical Logic

Author: Hao Wang

Publisher: Courier Corporation

Published: 2014-09-22

Total Pages: 290

ISBN-13: 0486171043

DOWNLOAD EBOOK

Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.


Mathematical Logic

Mathematical Logic

Author: Stephen Cole Kleene

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 436

ISBN-13: 0486317072

DOWNLOAD EBOOK

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.