Method for Calculating Rocket Engine Structural Loads

Method for Calculating Rocket Engine Structural Loads

Author: Jerrell M. Thomas

Publisher:

Published: 1970

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

A method for calculating structural loads in a rocket engine-actuator-vehicle system is developed. The engine is attached to the vehicle by a universal-type gimbal joint and by two actuators. The engine is assumed to be a rigid body. Either the actuator loads or the engine angular acceleration is assumed to be known with a calculation of the other required. A set of algebraic equations is developed from which the unknown actuator loads or angular acceleration and the forces and moments at the gimbal point can be calculated . I.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems

Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems

Author: Lin Zhang

Publisher: Springer

Published: 2016-09-21

Total Pages: 580

ISBN-13: 9811026726

DOWNLOAD EBOOK

This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this fourth volume of the set are organized in topical sections on Modeling and Simulation Applications; Simulation Software; Social Simulations; Verification, Validation and Accreditation.


Fundamentals of Rocket Propulsion

Fundamentals of Rocket Propulsion

Author: DP Mishra

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 364

ISBN-13: 1351708414

DOWNLOAD EBOOK

The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.


Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures

Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures

Author: Sook-Ying Ho

Publisher: Bentham Science Publishers

Published: 2010

Total Pages: 194

ISBN-13: 1608050246

DOWNLOAD EBOOK

This book deals with structural failure (induced by mechanical, aerodynamic, acoustic and aero-thermal, loads, etc.) of modern aerospace vehicles, in particular high-speed aircraft, solid propellant rocket systems and hypersonic flight vehicles, where structural integrity, failure prediction and service life assessment are particularly challenging, due to the increasingly more demanding mission requirements and the use of non-traditional materials, such as non-metallic composites, in their construction. Prediction of the complex loading environment seen in high-speed operation and constitutive / fracture models which can adequately describe the non-linear behaviour exhibited by advanced alloys and composite materials are critical in analyzing the non-linear structural response of modern aerospace vehicles and structures. The state-of-the-art of the different structural integrity assessment and prediction methodologies (including non-destructive structural health monitoring techniques) used for the structural design, service life assessment and failure analysis of the different types of aerospace vehicles are presented. The chapters are written by experts from aerospace / defence research organizations and academia in the fields of solid mechanics, and structural mechanics and dynamics of aircraft, rocket and hypersonic systems. The book will serve as a useful reference document containing specialist knowledge on appropriate prediction methodologies for a given circumstance and experimental data acquired from multi-national collaborative programs.