Meteorological Measurements and Instrumentation

Meteorological Measurements and Instrumentation

Author: Giles Harrison

Publisher: John Wiley & Sons

Published: 2015-01-20

Total Pages: 291

ISBN-13: 1118745809

DOWNLOAD EBOOK

This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning, data acquisition considerations and data processing principles necessary for reliable measurements. This also allows the long history of atmospheric measurements to be placed in the context of the requirements of modern climate science, by building the physical science appreciation of the instrumental record and looking forward to new and emerging sensor and recording technologies.


Measurement Methods in Atmospheric Sciences

Measurement Methods in Atmospheric Sciences

Author: Stefan Emeis

Publisher:

Published: 2010

Total Pages: 257

ISBN-13: 9783443010669

DOWNLOAD EBOOK

'Measurement Methods in Atmospheric Sciences provides a comprehensive overview of in-situ and remote sensing measurement techniques for probing the Earth's atmosphere. The methods presented in this book span the entire range from classical meteorology via atmospheric chemistry and micrometeorological fiux determination to Earth observation from space. Standard instruments for meteorological and air quality monitoring methods, as well as specialized instrumentation predominantly used in scientific experiments, are covered. The presented techniques run from simple mechanical sensors to highly sophisticated electronic devices. Special emphasis is on the rapidly evolving field of remote sensing techniques. Here, active ground-based remote sending techniques such as SODAR and LIDAR find a detailed coverage. The book conveys the basic principles of the various observational and monitoring methods, enabling the user to identify the most appropriate method. An introductory chapter covers general principles (e. g. inversion of measured data, available platforms, statistical properties of data, data acquisition). Later chapters each treat methods for measuring a specific property (e.g. humidity, wind speed, wind direction). Long chapters provide an introductory tabular list of the methods treated. More than 100 figures and 400 references, mostly to the recent scientific literature, aid the reader in reading up on the details of the various methods at hand. Recommendations at the end of each major chapter provide additional hints on the use of some instruments in order to facilitate the selection of the proper instrument for a successful measurement. A large number of national and international standards, providing precise guidelines for measuring and acquiring reliable, reproducible and comparable data sets are listed in the appendix. A dedicated index allows easy access to this valuable information. The book addresses undergraduate and graduate students in meteorological and atmospheric sciences, physical geography, ecology, environmental sciences, agriculture and related disciplines as well as scientists in the process of planning atmospheric measurements in field campaigns or working with data already acquired. Practitioners in environmental agencies and similar institutions will benefit from instrument descriptions and the extended lists in the appendix.' (Publisher)


Springer Handbook of Atmospheric Measurements

Springer Handbook of Atmospheric Measurements

Author: Thomas Foken

Publisher: Springer Nature

Published: 2021-11-09

Total Pages: 1761

ISBN-13: 3030521710

DOWNLOAD EBOOK

This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present classical in-situ measurements as well as remote sensing techniques from both ground-based as well as airborn or satellite-based methods. The next part focusses on complex measurements and methods that integrate different techniques to establish more holistic data. Brief discussions of measurements in soils and water, at plants, in urban and rural environments and for renewable energies demonstrate the potential of such applications. The final part provides an overview of atmospheric and ecological networks. Written by distinguished experts from academia and industry, each of the 64 chapters provides in-depth discussions of the available devices with their specifications, aspects of quality control, maintenance as well as their potential for the future. A large number of thoroughly compiled tables of physical quantities, sensors and system characteristics make this handbook a unique, universal and useful reference for the practitioner and absolutely essential for researchers, students, and technicians.


Solar and Infrared Radiation Measurements

Solar and Infrared Radiation Measurements

Author: Frank Vignola

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 408

ISBN-13: 1439851905

DOWNLOAD EBOOK

The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operation, and maintenance Data quality assessment Methods to use measured data to estimate irradiance for any surface With a broad range of content that will benefit students and more experienced readers alike, this resource serves as a primer and technical reference that presents the basic terminology and fundamentals for resource assessment. It explores the history of solar radiation instruments and addresses direct normal, global, diffuse, and tilted measurements, as well as the characteristics of instruments used for these measurements. The authors consider methods of assessing the uncertainty of solar measurements and then cover albedo, infrared, net, and spectral irradiance measurements and instrumentation. The book devotes a section to other meteorological instruments, and another to the basics for installing and operating a solar monitoring station. Appendices include information on solar resource assessment modeling and satellite-derived irradiance, along with other useful material. This book’s authors are experts who each have more than 30 years of experience developing and operating multiple measurement stations, working with industry to improve radiometry, and conducting various research projects.


The Atmosphere

The Atmosphere

Author: Paul I. Palmer

Publisher: Oxford University Press

Published: 2017

Total Pages: 153

ISBN-13: 0198722036

DOWNLOAD EBOOK

In this Very Short introduction, Paul Palmer looks at the structure and basic physics and chemistry of the Earth's atmosphere, comparing it to the atmospheres of other planets, particularly our neighbors, Venus and Mars. Palmer looks at the effects of pollutants and climate change, and what may happen to our atmosphere in the future


Environmental Instrumentation

Environmental Instrumentation

Author: Leo J. Fritschen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 230

ISBN-13: 1461262054

DOWNLOAD EBOOK

The rapid increase in environmental measurements during the past few decades is associated with (1) increasing awareness of the complex relations linking biological responses to atmospheric variables, (2) development of improved data acquisition and handling equipment, (3) the application of modeling to environmental problems, and (4) the implementation of large, cooperative studies of international scope. The consequences of man's possible alteration of the environment have increased our interest in the complex nature of biological responses to meteorological variables. This has generated activity in both measurements and in the application of modeling techniques. The virtual explosion of modeling activity is also associated with the development oflarge computers. The testing of these models has demonstrated the need for more, different, and better environmental data. In addition, technological developments, such as integrated circuits, have reduced the cost, power consumption, and complexity of data acquisition systems, thus promoting more environmental measurements. The emergence of scientific cooperation on a global scale has increased measurement activities markedly. The International Geophysical Year (1958) has been followed by the International Hydrologic Decade, the Inter national Biological Program, the Global Atmospheric Research Program, and a host of environmental studies of a regional nature that have all emphasized field data collection.


Mesoscale Meteorology in Midlatitudes

Mesoscale Meteorology in Midlatitudes

Author: Paul Markowski

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 435

ISBN-13: 1119966671

DOWNLOAD EBOOK

Mesoscale Meteorology in Mid-Latitudes presents the dynamics of mesoscale meteorological phenomena in a highly accessible, student-friendly manner. The book's clear mathematical treatments are complemented by high-quality photographs and illustrations. Comprehensive coverage of subjects including boundary layer mesoscale phenomena, orographic phenomena and deep convection is brought together with the latest developments in the field to provide an invaluable resource for mesoscale meteorology students. Mesoscale Meteorology in Mid-Latitudes functions as a comprehensive, easy-to-use undergraduate textbook while also providing a useful reference for graduate students, research scientists and weather industry professionals. Illustrated in full colour throughout Covers the latest developments and research in the field Comprehensive coverage of deep convection and its initiation Uses real life examples of phenomena taken from broad geographical areas to demonstrate the practical aspects of the science


Measurement, Instrumentation, and Sensors Handbook, Second Edition

Measurement, Instrumentation, and Sensors Handbook, Second Edition

Author: John G. Webster

Publisher: CRC Press

Published: 2014-01-29

Total Pages: 1641

ISBN-13: 1439848882

DOWNLOAD EBOOK

The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 96 existing chapters Covers instrumentation and measurement concepts, spatial and mechanical variables, displacement, acoustics, flow and spot velocity, radiation, wireless sensors and instrumentation, and control and human factors A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications.