Metal Clusters at Surfaces

Metal Clusters at Surfaces

Author: Karl-Heinz Meiwes-Broer

Publisher: Springer Science & Business Media

Published: 2000-04-05

Total Pages: 332

ISBN-13: 9783540665625

DOWNLOAD EBOOK

Numerous experiments and calculations have shown that isolated metal clusters possess many interesting features, quite different from those known from surface and solid- state physics or from atomic and molecular physics. The technological exploitation of these new properties, e.g. in miniature electronic or mechanical components, requires the cluster to be brought into an environment such as an encapsulating matrix or a surface. Due to the interaction with the contact medium, the properties of the clusters may change or even disappear. Thus the physics of cluster-on-surface systems -- the main subject of this book -- is of fundamental importance. The book addresses a wide audience, from the newcomer to the expert. Starting from fundamental concepts of adsorbate-surface interactions, the modification of electronic properties through electron confinement, and concepts of cluster production, it elucidates the distinct properties of the new metallic nanostructures.


Metal Clusters at Surfaces

Metal Clusters at Surfaces

Author: Karl-Heinz Meiwes-Broer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 315

ISBN-13: 3642571697

DOWNLOAD EBOOK

Due to the interaction with the contact medium, the properties of clusters may change or even disappear. Thus the physics of cluster-on-surface systems -- the main subject of this book -- is of fundamental importance. The book addresses a wide audience, from the newcomer to the expert. Starting from fundamental concepts of adsorbate-surface interactions, the modification of electronic properties through electron confinement, and concepts of cluster production, it elucidates the distinct properties of the new metallic nanostructures.


Cluster Models for Surface and Bulk Phenomena

Cluster Models for Surface and Bulk Phenomena

Author: Gianfranco Pacchioni

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 683

ISBN-13: 1468460218

DOWNLOAD EBOOK

It is widely recognized that an understanding of the physical and chemical properties of clusters will give a great deal of important information relevant to surface and bulk properties of condensed matter. This relevance of clusters for condensed matter is one of the major motivations for the study of atomic and molecular clusters. The changes of properties with cluster size, from small clusters containing only a few atoms to large clusters containing tens of thousands of atoms, provides a unique way to understand and to control the development of bulk properties as separated units are brought together to form an extended system. Another important use of clusters is as theoretical models of surfaces and bulk materials. The electronic wavefunctions for these cluster models have special advantages for understanding, in particular, the local properties of condensed matter. The cluster wavefunctions, obtained with molecular orbital theory, make it possible to relate chemical concepts developed to describe chemical bonds in molecules to the very closely related chemical bonding at the surface and in the bulk of condensed matter. The applications of clusters to phenomena in condensed matter is a cross-disciplinary activity which requires the interaction and collaboration of researchers in traditionally separate areas. For example, it is necessary to bring together workers whose background and expertise is molecular chemistry with those whose background is solid state physics. It is also necessary to bring together experimentalists and theoreticians.


Electronic Structure of Alloys, Surfaces and Clusters

Electronic Structure of Alloys, Surfaces and Clusters

Author: Abhijit Mookerjee

Publisher: CRC Press

Published: 2002-11-28

Total Pages: 396

ISBN-13: 9780415272490

DOWNLOAD EBOOK

Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, surfaces and clusters. Understanding the electronic structure of these systems is fundamental not only for the basic science, but also constitutes a very important step in various technological aspects, such as tuning their stabilities, chemical and catalytic reactivities and magnetism. Expert practitioners give an up-to-date account of the field with enough detailed background so that even a newcomer can follow the development. The theoretical framework is discussed in addition to the present status of knowledge in the field. Electronic Structure of Alloys, Surfaces and Clusters also includes an extensive bibliography which provides a comprehensive reading list of work on the topic.


Surface Diffusion

Surface Diffusion

Author: Grażyna Antczak

Publisher:

Published: 2010

Total Pages: 757

ISBN-13: 9780511728846

DOWNLOAD EBOOK

"For the first time, this book unites the theory, experimental techniques and computational tools used to describe the diffusion of atoms, molecules and nanoparticles across metal surfaces. Starting with an outline of the formalism that describes diffusion on surfaces, the authors guide the reader through the principles of atomic movement, before moving on to diffusion under special circumstances, such as the presence of defects or foreign species. With an initial focus on the behaviour of single entities on a surface, later chapters address the movement of clusters of atoms and the interactions between adatoms. While there is a special emphasis on experimental work, attention is paid to the increasingly valuable contributions theoretical work has made in this field. This book has wide interdisciplinary appeal and is ideal for researchers in solid state physics, chemistry as well as materials science, and engineering"--Provided by publisher.


Metal Clusters in Catalysis

Metal Clusters in Catalysis

Author: Bruce C. Gates

Publisher: Elsevier Publishing Company

Published: 1986

Total Pages: 684

ISBN-13:

DOWNLOAD EBOOK

Research on metal clusters (compounds with metal-metal bonds) has undergone explosive growth and the subject is now perhaps one of the hottest'' topics in organometallic chemistry. The prospect of catalytic applications has motivated a large part of the research mentioned in this book - the long term goal being to exploit the unique properties of metal clusters to prepare catalysts with new activities and selectivities. This is the first book to address the role of metal clusters in catalysis. The coverage is up-to-date and is particularly comprehensive, ranging from molecular chemistry of clusters (synthesis, structure, thermochemistry, reactivity, and homogeneous catalysis) to supported clusters (molecular analogues on polymers, and metal oxides and metals in zeolite cages). Preparation by methods of organometallic surface chemistry and metal atom chemistry and characterization of surface structures by physical methods are highlighted. Concepts unifying metal cluster chemistry and the chemistry of metal surfaces are elucidated. Of particular value to the user will be the cluster and subject indexes. The cluster index is organized in alphabetical order according to the metal.


Structure and Properties of Atomic Nanoclusters

Structure and Properties of Atomic Nanoclusters

Author: Julio A. Alonso

Publisher: World Scientific

Published: 2012

Total Pages: 492

ISBN-13: 1848167334

DOWNLOAD EBOOK

Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.


Small Particles and Inorganic Clusters

Small Particles and Inorganic Clusters

Author: Claude Chapon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 555

ISBN-13: 3642749135

DOWNLOAD EBOOK

A lively demonstration of the great vitality and the multidisciplinary character of cluster research and of the usefulness of synthesizing its various aspects was given at this symposium. This volume covers all aspects of the physical and chemical properties of free and supported clusters or small particles: static, dynamical, electronic, magnetic and optical properties, adsorption and chemical phenomena. It thus gives a complete overview of the status of the field and its development.


Metal Nanoparticles and Clusters

Metal Nanoparticles and Clusters

Author: Francis Leonard Deepak

Publisher: Springer

Published: 2017-11-17

Total Pages: 431

ISBN-13: 3319680536

DOWNLOAD EBOOK

​This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.


Physics and Chemistry of Finite Systems: From Clusters to Crystals

Physics and Chemistry of Finite Systems: From Clusters to Crystals

Author: Peru Jena

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 1414

ISBN-13: 9401726450

DOWNLOAD EBOOK

Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the size dependent properties change from discrete quantum conditions, as in clusters, to boundary constrained bulk conditions, as in nanoscale materials, to bulk conditions insensitive to boundaries? How do the criteria of classification have to be changed as one goes from one size domain to another? Potential for high technological applications also seem to be endless. Clusters of otherwise non-magnetic materials exhibit magnetic behavior when constrained by size, shape, and dimension. NanoscaIe metal particles exhibit non-linear opticaI properties and increased mechanical strength. SimiIarly, materials made from nanoscale ceramic particIes possess plastic behavior.