Metaheuristics and Optimization in Computer and Electrical Engineering

Metaheuristics and Optimization in Computer and Electrical Engineering

Author: Navid Razmjooy

Publisher: Springer Nature

Published: 2020-11-16

Total Pages: 311

ISBN-13: 3030566897

DOWNLOAD EBOOK

The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.


Metaheuristics and Optimization in Computer and Electrical Engineering

Metaheuristics and Optimization in Computer and Electrical Engineering

Author: Navid Razmjooy

Publisher: Springer

Published: 2021-11-17

Total Pages: 311

ISBN-13: 9783030566913

DOWNLOAD EBOOK

The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.


Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Author: Vasant, Pandian M.

Publisher: IGI Global

Published: 2012-09-30

Total Pages: 735

ISBN-13: 1466620870

DOWNLOAD EBOOK

Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.


Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Author: Omid Bozorg-Haddad

Publisher: John Wiley & Sons

Published: 2017-10-09

Total Pages: 306

ISBN-13: 1119386993

DOWNLOAD EBOOK

A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.


Search and Optimization by Metaheuristics

Search and Optimization by Metaheuristics

Author: Ke-Lin Du

Publisher: Birkhäuser

Published: 2016-07-20

Total Pages: 437

ISBN-13: 3319411926

DOWNLOAD EBOOK

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.


Meta-heuristic Optimization Techniques

Meta-heuristic Optimization Techniques

Author: Anuj Kumar

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-01-19

Total Pages: 219

ISBN-13: 3110716259

DOWNLOAD EBOOK

This book offers a thorough overview of the most popular and researched meta-heuristic optimization techniques and nature-inspired algorithms. Their wide applicability makes them a hot research topic and an effi cient tool for the solution of complex optimization problems in various fi elds of sciences, engineering, and in numerous industries.


Multi-Objective Optimization in Computer Networks Using Metaheuristics

Multi-Objective Optimization in Computer Networks Using Metaheuristics

Author: Yezid Donoso

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 324

ISBN-13: 1000687546

DOWNLOAD EBOOK

Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design an


Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches

Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches

Author: Yin, Peng-Yeng

Publisher: IGI Global

Published: 2012-10-31

Total Pages: 375

ISBN-13: 146662146X

DOWNLOAD EBOOK

Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.


Metaheuristic Algorithms in Industry 4.0

Metaheuristic Algorithms in Industry 4.0

Author: Pritesh Shah

Publisher: CRC Press

Published: 2021-09-29

Total Pages: 302

ISBN-13: 1000435989

DOWNLOAD EBOOK

Due to increasing industry 4.0 practices, massive industrial process data is now available for researchers for modelling and optimization. Artificial Intelligence methods can be applied to the ever-increasing process data to achieve robust control against foreseen and unforeseen system fluctuations. Smart computing techniques, machine learning, deep learning, computer vision, for example, will be inseparable from the highly automated factories of tomorrow. Effective cybersecurity will be a must for all Internet of Things (IoT) enabled work and office spaces. This book addresses metaheuristics in all aspects of Industry 4.0. It covers metaheuristic applications in IoT, cyber physical systems, control systems, smart computing, artificial intelligence, sensor networks, robotics, cybersecurity, smart factory, predictive analytics and more. Key features: Includes industrial case studies. Includes chapters on cyber physical systems, machine learning, deep learning, cybersecurity, robotics, smart manufacturing and predictive analytics. surveys current trends and challenges in metaheuristics and industry 4.0. Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.


A Practical Approach to Metaheuristics Using LabVIEW and MATLAB®

A Practical Approach to Metaheuristics Using LabVIEW and MATLAB®

Author: Arturo Molina Gutiérrez

Publisher: Chapman & Hall/CRC

Published: 2020

Total Pages: 158

ISBN-13: 9780367494261

DOWNLOAD EBOOK

This book describes and implements metaheuristic algorithms, using a practical approach in which engineering problems are solved. A novel optimization algorithm, called Earthquake optimization, is presented as a main example. Since this algorithm is used for earthquake modeling, a geological optimization strategy is demonstrated.