Ecological Communities

Ecological Communities

Author: Takayuki Ohgushi

Publisher: Cambridge University Press

Published: 2007-01-04

Total Pages: 399

ISBN-13: 1139462113

DOWNLOAD EBOOK

Food webs examine the interactions between organisms to explain ecosystem community structure. This book argues how food webs alone cannot depict a true picture of a community. It shows that examining other indirect interactions between organisms can help us to better understand the structure and organisation of communities and ecosystems.


Metacommunity Ecology

Metacommunity Ecology

Author: Mathew A. Leibold

Publisher: Princeton University Press

Published: 2017-12-18

Total Pages: 513

ISBN-13: 1400889065

DOWNLOAD EBOOK

Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.


Evolutionary Ecology of Plant-Herbivore Interaction

Evolutionary Ecology of Plant-Herbivore Interaction

Author: Juan Núñez-Farfán

Publisher: Springer

Published: 2021-08-01

Total Pages: 376

ISBN-13: 9783030460143

DOWNLOAD EBOOK

Plant-herbivore interactions are a central topic in evolutionary ecology. Historically, their study has been a cornerstone for coevolutionary theory. Starting from classic ecological studies at the phenotypic level, it has since expanded to molecular and genomic approaches. After a historical perspective, the book’s subsequent chapters cover a wide range of topics: from populations to ecosystems; plant- and herbivore-focused studies; in natural and in man-modified ecosystems; and both micro- and macro-evolutionary levels. All chapters include valuable background information and empirical evidence. Given its scope, the book will be of interest to both students and researchers, and will hopefully stimulate further research in this exciting field of evolutionary biology.


Mathematical Models of Plant-herbivore Interactions

Mathematical Models of Plant-herbivore Interactions

Author: Zhilan Feng

Publisher:

Published: 2017

Total Pages: 219

ISBN-13: 9781315154138

DOWNLOAD EBOOK

"Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology."--Provided by publisher.


Mathematical Models of Plant-Herbivore Interactions

Mathematical Models of Plant-Herbivore Interactions

Author: Zhilan Feng

Publisher: CRC Press

Published: 2021-03-31

Total Pages: 0

ISBN-13: 9780367782054

DOWNLOAD EBOOK

This book addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory. It will be of use for graduate students and researchers interested in mathematical biology and ecology.


Community-Level Consequences of Plant-Herbivore Interactions

Community-Level Consequences of Plant-Herbivore Interactions

Author: Tania N. Kim

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

ABSTRACT: Ecological systems are dynamic, yet many experimental studies examine plant-herbivore interactions as from a simple, static, or single perspective. Reciprocal interactions can have profound effects on communities, and ignoring such feedbacks can result in mismatches between theoretical predictions and experimental results. In this dissertation, I examined reciprocal interactions between two plant species, Solanum carolinense and Solidago altissima and their insect herbivores. In chapter 2, I examined how insect herbivores influenced plant competition and coexistence. Theory suggests that herbivores influence plant communities by altering competitive interactions. Because the outcome of competition is influenced by both the per capita competitive ability of plants and demographic processes including density dependence and intrinsic population growth rates, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. I fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solanum carolinense and Solidago altissima . Within a growing season, herbivores reduced Solanum plant size, but did not affect Solidago, which exhibited compensatory growth. Across seasons, herbivores did not affect the density of Solanum but reduced both the density and population growth of Solidago. The best fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effects of Solidago on Solanum; in other years herbivores influenced the intrinsic population growth rates of Solidago. I examined herbivore effects on the longer-term outcome of competition (over the time-scale of a typical old-field habitat) using simulations based on the best fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, Solanum was excluded by Solidago in 60% of the simulations. I demonstrated that herbivores can influence the outcome of competition through both changes in per capita competitive effects and changes in demographic processes. I discuss the implications of these results for ecological succession and biocontrol. In chapter 3, I examined how plant community composition influenced damage patterns on plants. Neighboring plants can increase (associational susceptibility) or decrease (associational resistance) the likelihood of damage to a focal plant but their long-term consequences for plant competition and coexistence are unclear. Neighbor effects on damage can occur through changes in the relative density of the focal plant (i.e., frequency of the focal plant), the absolute density of the focal plant, or through the total density of plants, because the different mechanisms known to influence damage patterns (e.g., pest suppression by predators, herbivore foraging behavior, plant quality) respond to different features of the neighborhood. To examine the long-term consequences of neighbor effects for plant communities, an understanding of how density and frequency of plants influence damage is needed. Using a response surface experimental design, I examined the effects of plant density and frequency on damage to Solanum carolinense. I found non-linear effects of the frequency of heterospecific neighbors (Solidago altissima) on Solanum damage, and a positive effect of Solanum density on damage. The non-linear pattern suggests that multiple mechanisms may be operating to influence damage. Non-linear patterns may be common in other habitats but might be overlooked because traditional neighborhood studies use a very narrow range of densities in their experiments. I encourage future neighborhood studies to use response surface designs to determine the prevalence of non-linear relationships in nature. In chapter 4, I examined how neighborhood composition (i.e. plant density and frequency) influenced four mechanisms known to influence damage to plants (predator suppression, foraging behavior of herbivores, plant quality, and microclimate) using a response surface experimental design. An associational effect was observed between Solanum damage and the frequency of a heterospecific neighbor (Solidago altissima). Predator abundance and richness, soil moisture, and herbivore foraging strategies were all influenced by the frequency of Solidago, suggesting that these mechanisms may contribute to associational susceptibility in this interaction. Other mechanisms (microclimate and plant quality) were influenced by Solidago and total plant densities, respectively. This study showed that different mechanisms can be influenced by different components of the neighborhood and most likely interacts to influence damage to plants. I discuss the implications of these finding for agriculture and for understanding the long-term consequences of damage for plant communities. In chapter 5, I examined how herbivory, herbivore community composition, plant nutrient content, and herbivore performance varied with latitude. A longstanding theory in biogeography is that species interactions, including herbivory, are stronger in southern latitudes compared to those in the north. Because of this, the latitudinal gradients (LG) hypothesis in damage and plant defenses predicts that plants should be better defended in the tropics because selection for plant defenses is greater. Recent empirical studies suggest that the predictions from this hypothesis may be limited to a narrow range of systems (e.g. salt marshes). In efforts to understand why LG in herbivory and plant defenses are not prevalent as once thought, I examined relationships between herbivore abundance and richness, plant nutrient content, and latitude in old-field systems. I also examined latitudinal gradients in herbivore performance using generalist and specialist herbivores. Some relationships with latitude matched predictions from the LG hypothesis (e.g. plant nutrient content, damage to Solidago altissima), while others had opposite relationships (e.g. herbivore abundance and richness, damage to Solanum carolinense), and some relationships varied with leaf longevity. Herbivore responses varied with diet specialization and the exact relationship with latitude (linear, non-linear, positive, negative, or no relationship) varied with herbivore species. These results suggest that the predictions from the LG hypothesis are too simple; a more thorough investigation of relationships between herbivore abundance, damage, and plant resistance in other wide-ranging systems is needed.


Metacommunity Ecology, Volume 59

Metacommunity Ecology, Volume 59

Author: Mathew A. Leibold

Publisher: Princeton University Press

Published: 2018

Total Pages: 512

ISBN-13: 0691049165

DOWNLOAD EBOOK

Metacommunity ecology links smaller-scale processes that have been the provenance of population and community ecology—such as birth-death processes, species interactions, selection, and stochasticity—with larger-scale issues such as dispersal and habitat heterogeneity. Until now, the field has focused on evaluating the relative importance of distinct processes, with niche-based environmental sorting on one side and neutral-based ecological drift and dispersal limitation on the other. This book moves beyond these artificial categorizations, showing how environmental sorting, dispersal, ecological drift, and other processes influence metacommunity structure simultaneously. Mathew Leibold and Jonathan Chase argue that the relative importance of these processes depends on the characteristics of the organisms, the strengths and types of their interactions, the degree of habitat heterogeneity, the rates of dispersal, and the scale at which the system is observed. Using this synthetic perspective, they explore metacommunity patterns in time and space, including patterns of coexistence, distribution, and diversity. Leibold and Chase demonstrate how these processes and patterns are altered by micro- and macroevolution, traits and phylogenetic relationships, and food web interactions. They then use this scale-explicit perspective to illustrate how metacommunity processes are essential for understanding macroecological and biogeographical patterns as well as ecosystem-level processes. Moving seamlessly across scales and subdisciplines, Metacommunity Ecology is an invaluable reference, one that offers a more integrated approach to ecological patterns and processes.


Multitrophic Level Interactions

Multitrophic Level Interactions

Author: Teja Tscharntke

Publisher: Cambridge University Press

Published: 2002-03-21

Total Pages: 234

ISBN-13: 9780521791106

DOWNLOAD EBOOK

This book explores the complex interactions between plants, their herbivores and natural enemies.


Ecology and Evolution of Plant-Herbivore Interactions on Islands

Ecology and Evolution of Plant-Herbivore Interactions on Islands

Author: Xoaquín Moreira

Publisher: Springer Nature

Published: 2024-01-03

Total Pages: 248

ISBN-13: 3031478142

DOWNLOAD EBOOK

Theory and early empirical work posed that herbivore pressure should be lower on islands than on the mainland owing to lower herbivore abundance and diversity in insular systems. Consequently, plant taxa found on islands are expected to be less protected or even to have lost their defences completely. While early observational studies supported the prediction of lower herbivory and plant defences on islands, recent island-mainland comparisons have yielded mixed results, with some studies finding no differences between islands and mainlands or, surprisingly, higher herbivory and plant defences on islands. In this book, the authors aim to re-assess current theory and initiate a new generation of work on insularity effects on plant-herbivore interactions. This book aims to fill the research gaps by integrating the research that has been done to date and by compiling and summarising new research on insularity effects on plant-herbivore interactions. It provides a critical examination of the patterns in light of classical theory and identifies potential mechanisms or underlying processes. It also aims to raise new questions that will form the basis for a revised and more robust research programme.