Mesoscopic Electronics in Solid State Nanostructures

Mesoscopic Electronics in Solid State Nanostructures

Author: Thomas Heinzel

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 412

ISBN-13: 3527618929

DOWNLOAD EBOOK

This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. "This book is a useful tool, too, for the experienced researcher to get a summary of recent developments in solid state nanostructures. I applaud the author for a marvellous contribution to the scientific community of mesoscopic electronics." Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich


Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics

Author: Tsuneya Ando

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 293

ISBN-13: 3642719767

DOWNLOAD EBOOK

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.


Electron Transport in Nanostructures and Mesoscopic Devices

Electron Transport in Nanostructures and Mesoscopic Devices

Author: Thierry Ouisse

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 282

ISBN-13: 111862338X

DOWNLOAD EBOOK

This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.


Semiconductor Nanostructures

Semiconductor Nanostructures

Author: Thomas Ihn

Publisher: OUP Oxford

Published: 2009-12-04

Total Pages: 568

ISBN-13: 0191574171

DOWNLOAD EBOOK

This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect. The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band engineering, doping, gating, and a selection of nanostructure fabrication techniques. The book discusses the Drude-Boltzmann-Sommerfeld transport theory as well as conductance quantization and the Landauer-Büttiker theory. These concepts are extended to mesoscopic interference phenomena and decoherence, magnetotransport, and interaction effects in quantum-confined systems, guiding the reader from fundamental effects to specialized state-of-the-art experiments. The book will provide a thorough introduction into the topic for graduate and PhD students, and will be a useful reference for lecturers and researchers working in the field.


Nanoelectronics and Information Technology

Nanoelectronics and Information Technology

Author: Rainer Waser

Publisher: John Wiley & Sons

Published: 2012-05-29

Total Pages: 1041

ISBN-13: 3527409270

DOWNLOAD EBOOK

Fachlich auf höchstem Niveau, visuell überzeugend und durchgängig farbig illustriert: Das ist die neue Auflage der praxisbewährten Einführung in spezialisierte elektronische Materialien und Bauelemente aus der Informationstechnologie. Über ein Drittel des Inhalts ist neu, alle anderen Beiträge wurden gründlich überarbeitet und aktualisiert.


Solid-State Physics for Electronics

Solid-State Physics for Electronics

Author: Andre Moliton

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 293

ISBN-13: 111862324X

DOWNLOAD EBOOK

Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.


Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems

Author: Supriyo Datta

Publisher: Cambridge University Press

Published: 1997-05-15

Total Pages: 398

ISBN-13: 1139643010

DOWNLOAD EBOOK

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.


Solid State Physics

Solid State Physics

Author: Philip Hofmann

Publisher: John Wiley & Sons

Published: 2011-11-28

Total Pages: 235

ISBN-13: 352765707X

DOWNLOAD EBOOK

Filling a gap in the literature for a brief course in solid state physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions as well as further supplementary material available free to lecturers from the Wiley-VCH website.


Semiconductor Spintronics

Semiconductor Spintronics

Author: Thomas Schäpers

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-05-10

Total Pages: 521

ISBN-13: 3110639327

DOWNLOAD EBOOK

This revised and expanded edition of the first comprehensive introduction to the rapidly-evolving field of spintronics covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Moreover, the book now also includes spin-based optics, topological materials and insulators, and the quantum spin Hall effect.


Nanotechnologies: The Physics of Nanomaterials

Nanotechnologies: The Physics of Nanomaterials

Author: David Schmool

Publisher: CRC Press

Published: 2021-05-15

Total Pages: 534

ISBN-13: 1000208249

DOWNLOAD EBOOK

Volume 2: Physical Properties of Nanostructured Materials and Their Applications of Nanotechnology: The Physics of Nanomaterials (2-volume set) provides a good overview of the main techniques of the working principles and the type of structures that can be produced with nanomaterials. Specifically, Volume 2 discusses the mechanical, electrical, and optical properties of nanostructures as well as nanomagnetism, spintronics, spin dynamics, as well as a broad range of applications to illustrate how the physical properties of materials can be manipulated to perform very specific functions. Nanotechnology: The Physics of Nanomaterials (2-volume set) is a comprehensive guide to the various aspects of nanophysics. The author’s microscopic approach illustrates how physical principles can be used to understand the basic properties and functioning of low-dimensional systems. It provides an in-depth introduction to the techniques of production and analysis of materials at the nanoscopic level. Much of physics is based on our understanding of solid-state physics. These volumes show how limitations of size can give rise to new physical properties and quantum effects, which can be exploited in new applications and devices. Volume 1: The Physics of Surfaces and Nanofabrication Techniques provides a broad introduction to nanophysics and nanotechnologies, and the importance of low-dimensional and surface physics is discussed indepth. Chapters in Volume 1 covers the large range of physical preparation techniques available for the production of nanomaterials and nanostructuring. Key features: Provides a comprehensive treatment of nanoscience, covering all major areas of the physics involved in nanostructures, including sample preparation techniques, characterization methods, physical principles, and applications Presents an introduction and summary to each chapter, highlighting the principal ideas of each chapter in a concise manner Includes revision problems that will allow students to assess their progress at the end of each chapter Incorporates the author’s 25 years research experience Based on a lecture course the author has given over a period of several years, Nanotechnology: The Physics of Nanomaterials includes the benefit of feedback from students, helping to make the subject matter approachable and appealing to newcomers and students. The volumes will be valuable for courses in nanotechnologies, nanomedicine, nanobiotechnologies and more.