Meshfree Methods for Partial Differential Equations IX

Meshfree Methods for Partial Differential Equations IX

Author: Michael Griebel

Publisher: Springer

Published: 2019-06-19

Total Pages: 208

ISBN-13: 3030151190

DOWNLOAD EBOOK

This volume collects selected papers presented at the Ninth International Workshop on Meshfree Methods held in Bonn, Germany in September 2017. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. While the fundamental theory of meshfree methods has been developed and considerable advances of the various methods have been made, many challenges in the mathematical analysis and practical implementation of meshfree methods remain. This symposium aims to promote collaboration among engineers, mathematicians, and computer scientists and industrial researchers to address the development, mathematical analysis, and application of meshfree and particle methods especially to multiscale phenomena. It continues the 2-year-cycled Workshops on Meshfree Methods for Partial Differential Equations.


Meshfree Methods for Partial Differential Equations

Meshfree Methods for Partial Differential Equations

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 468

ISBN-13: 3642561039

DOWNLOAD EBOOK

Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.


Meshfree Methods for Partial Differential Equations IX

Meshfree Methods for Partial Differential Equations IX

Author: Michael Griebel

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9783030151201

DOWNLOAD EBOOK

This volume collects selected papers presented at the Ninth International Workshop on Meshfree Methods held in Bonn, Germany in September 2017. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. While the fundamental theory of meshfree methods has been developed and considerable advances of the various methods have been made, many challenges in the mathematical analysis and practical implementation of meshfree methods remain. This symposium aims to promote collaboration among engineers, mathematicians, and computer scientists and industrial researchers to address the development, mathematical analysis, and application of meshfree and particle methods especially to multiscale phenomena. It continues the 2-year-cycled Workshops on Meshfree Methods for Partial Differential Equations.


An Introduction to Meshfree Methods and Their Programming

An Introduction to Meshfree Methods and Their Programming

Author: G.R. Liu

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 497

ISBN-13: 1402034687

DOWNLOAD EBOOK

The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.


Meshfree Methods for Partial Differential Equations III

Meshfree Methods for Partial Differential Equations III

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2007-07-18

Total Pages: 311

ISBN-13: 3540462228

DOWNLOAD EBOOK

Meshfree methods for the numerical solution of partial differential equations are becoming more and more mainstream in many areas of applications. This volume represents the state-of-the-art in meshfree methods. It consists of articles which address the different meshfree techniques, their mathematical properties and their application in applied mathematics, physics and engineering.


Meshfree Methods for Partial Differential Equations II

Meshfree Methods for Partial Differential Equations II

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2006-09-21

Total Pages: 307

ISBN-13: 354027099X

DOWNLOAD EBOOK

The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a very active research field both in the mathematics and engineering community. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Second International Workshop on Meshfree Methods held in September 2003 in Bonn. The articles address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM, etc.) and their application in applied mathematics, physics and engineering. The volume is intended to foster this new and exciting area of interdisciplinary research and to present recent advances and results in this field.


Advanced Topics in Computational Partial Differential Equations

Advanced Topics in Computational Partial Differential Equations

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

Published: 2012-09-22

Total Pages: 676

ISBN-13: 3642182372

DOWNLOAD EBOOK

A gentle introduction to advanced topics such as parallel computing, multigrid methods, and special methods for systems of PDEs. The goal of all chapters is to ‘compute’ solutions to problems, hence algorithmic and software issues play a central role. All software examples use the Diffpack programming environment - some experience with Diffpack is required. There are also some chapters covering complete applications, i.e., the way from a model, expressed as systems of PDEs, through to discretization methods, algorithms, software design, verification, and computational examples. Suitable for readers with a background in basic finite element and finite difference methods for partial differential equations.


Meshfree Methods for Partial Differential Equations V

Meshfree Methods for Partial Differential Equations V

Author: Michael Griebel

Publisher: Springer Science & Business Media

Published: 2010-11-04

Total Pages: 271

ISBN-13: 3642162290

DOWNLOAD EBOOK

The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.


German Success Stories in Industrial Mathematics

German Success Stories in Industrial Mathematics

Author: Hans Georg Bock

Publisher: Springer Nature

Published: 2022-03-12

Total Pages: 174

ISBN-13: 3030814556

DOWNLOAD EBOOK

This book should illustrate the impact of collaborations between mathematics and industry. It is both an initiative of and coordinated by the German Committee for Mathematical Modeling, Simulation and Optimization (KoMSO). This publication aims at comparing the state of the art at the intersection of mathematics and industry, as well as the demands for future development of science and technology in Germany and beyond. Each contribution addresses the importance of mathematics in innovation by means of introducing a successful cooperation with an industrial partner in order to display the wide range of industrial sectors where the use of mathematics is the crucial factor for success, but also show the variety of mathematical areas involved in these activities. The success stories introduced in this volume will be supplemented by appropriate illustrations. It is the goal of this publication to highlight cooperation between mathematics and industry as a two-way technology and knowledge transfer, providing industry with solutions and mathematics with new research topics and inspiring new methodologies.


Advances in Trefftz Methods and Their Applications

Advances in Trefftz Methods and Their Applications

Author: Carlos Alves

Publisher: Springer Nature

Published: 2020-09-30

Total Pages: 203

ISBN-13: 3030528049

DOWNLOAD EBOOK

In this book we gather recent mathematical developments and engineering applications of Trefftz methods, with particular emphasis on the Method of Fundamental Solutions (MFS). These are true meshless methods that have the advantage of avoiding the need to set up a mesh altogether, and therefore going beyond the reduction of the mesh to a boundary. These Trefftz methods have advantages in several engineering applications, for instance in inverse problems where the domain is unknown and some numerical methods would require a remeshing approach. Trefftz methods are also known to perform very well with regular domains and regular data in boundary value problems, achieving exponential convergence. On the other hand, they may also under certain conditions, exhibit instabilities and lead to ill-conditioned systems. This book is divided into ten chapters that illustrate recent advances in Trefftz methods and their application to engineering problems. The first eight chapters are devoted to the MFS and variants whereas the last two chapters are devoted to related meshless engineering applications. Part of these selected contributions were presented in the 9th International Conference on Trefftz Methods and 5th International Conference on the MFS, held in 2019, July 29-31, in Lisbon, Portugal.