Expression, Purification, and Structural Biology of Membrane Proteins

Expression, Purification, and Structural Biology of Membrane Proteins

Author: Camilo Perez

Publisher: Humana

Published: 2021-03-14

Total Pages: 423

ISBN-13: 9781071603758

DOWNLOAD EBOOK

This book collects up-to-date advanced protocols and advice from leading experts in the area of membrane protein biology that can be applied to structural and functional studies of any membrane protein system. The contents explore methods for cloning and expression of membrane proteins and membrane protein complexes in prokaryotic and eukaryotic systems, approaches for protein purification, nanobody applications, as well as biophysical characterization and much more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Expression, Purification, and Structure Biology of Membrane Proteins serves to guide and encourage young researchers and newcomers to the field to tackle bold new studies on membrane proteins. Chapter 11 is available open access under a CC-BY 4.0 license via link.springer.com.


Membrane Proteins Production for Structural Analysis

Membrane Proteins Production for Structural Analysis

Author: Isabelle Mus-Veteau

Publisher: Springer

Published: 2014-06-20

Total Pages: 441

ISBN-13: 1493906623

DOWNLOAD EBOOK

This book updates the latest development in production, stabilization and structural analysis techniques of membrane proteins. This field has made significant advances since the elucidation of the first 3-D structure of a recombinant G Protein Coupled Receptor (GPCR), rhodopsin, with the structure of several more GPCRs having been solved in the past five years. In fact, the 2012 Nobel Prize in Chemistry was awarded for groundbreaking discoveries on the inner workings of GPCRs. This book is essential reading for all researchers, biochemists and crystallographers working with membrane proteins, who are interested by the structural characterization of their favorite protein and who wish to follow the expression, migration, modifications and recycling of a membrane protein.


Electron Paramagnetic Resonance: Volume 27

Electron Paramagnetic Resonance: Volume 27

Author: Bela E. Bode

Publisher: Royal Society of Chemistry

Published: 2020-11-25

Total Pages: 277

ISBN-13: 183916171X

DOWNLOAD EBOOK

Electron paramagnetic resonance (EPR) applications remain highly significant in modern analytical science and this volume compiles critical coverage of developments in the recent literature. The topics covered in this volume describe contrasting types of EPR application, including rapid scan EPR, using the EPR toolkit to investigate the structural dynamics of membrane proteins and pulse dipolar EPR spectroscopy for investigating biomolecular binding events. An additional chapter reviewing the PARACAT collaboration from the EU has also been included. Providing a snapshot of the area by a handpicked group of researchers at the cutting-edge of the field, this book is a useful addition to any library supporting this research.


Production of Membrane Proteins

Production of Membrane Proteins

Author: Anne Skaja Robinson

Publisher: John Wiley & Sons

Published: 2011-06-15

Total Pages: 631

ISBN-13: 3527634533

DOWNLOAD EBOOK

Designed as a research-level guide to current strategies and methods of membrane protein production on the small to intermediate scale, this practice-oriented book provides detailed, step-by-step laboratory protocols as well as an explanation of the principles behind each method, together with a discussion of its relative advantages and disadvantages. Following an introductory section on current challenges in membrane protein production, the book goes on to look at expression systems, emerging methods and approaches, and protein specific considerations. Case studies illustrate how to select or sample the optimal production system for any desired membrane protein, saving both time and money on the laboratory as well as the technical production scale. Unique in its coverage of "difficult" proteins with large membrane-embedded domains, proteins from extremophiles, peripheral membrane proteins, and protein fragments.


Structural Genomics on Membrane Proteins

Structural Genomics on Membrane Proteins

Author: Kenneth H. Lundstrom

Publisher: CRC Press

Published: 2006-02-23

Total Pages: 401

ISBN-13: 1420016083

DOWNLOAD EBOOK

While the genomic revolution has quickly led to the deposit of more than 30,000 structures in the protein data bank (PDB), less than one percent of those contributions represent membrane proteins despite the fact that membrane proteins constitute some 20 percent of all proteins. This discrepancy becomes significantly troublesome when it is coupled


Crystallization of Membrane Proteins

Crystallization of Membrane Proteins

Author: Hartmut Michel

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 343

ISBN-13: 1351088173

DOWNLOAD EBOOK

The precise knowledge of the structure of biological macromolecules forms the basis of understanding their function and their mechanism of action. It also lays the foundation for rational protein and drug design. The only method to obtain this knowledge is still crystallography. At present, the structures of about 400 proteins are known at or nearly at atomic proteins. However, only two of them are membrane proteins or complexes of the membrane proteins. The reasons for the difference is not the crystals of membrane proteins resists forming special problems when being analysed. The reason is that the membrane proteins resist into forming into well-ordered crystals. The intention of this book is to help to produce well-ordered crystals proteins and to provide guidelines, it is aimed at both biochemists and protein crystallographer‘s.


Structural Biology in Drug Discovery

Structural Biology in Drug Discovery

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-09

Total Pages: 1437

ISBN-13: 1118900502

DOWNLOAD EBOOK

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins


Membrane Proteins in Aqueous Solutions

Membrane Proteins in Aqueous Solutions

Author: Jean-Luc Popot

Publisher: Springer

Published: 2018-06-08

Total Pages: 724

ISBN-13: 3319731483

DOWNLOAD EBOOK

This book is the first to be entirely devoted to the challenging art of handling membrane proteins out of their natural environment, a key process in biological and pharmaceutical research, but one plagued with difficulties and pitfalls. Written by one of the foremost experts in the field, Membrane Proteins in Aqueous Solutions is accessible to any member of a membrane biology laboratory. After presenting the structure, functions, dynamics, synthesis, natural environment and lipid interactions of membrane proteins, the author discusses the principles of extracting them with detergents, the mechanisms of detergent-induced destabilization, countermeasures, and recent progress in developing detergents with weaker denaturing properties. Non-conventional alternatives to detergents, including bicelles, nanodiscs, amphipathic peptides, fluorinated surfactants and amphipols, are described, and their relative advantages and drawbacks are compared. The synthesis and solution properties of the various types of amphipols are presented, as well as the formation and properties of membrane protein/amphipol complexes and the transfer of amphipol-trapped proteins to detergents, nanodiscs, lipidic mesophases, or living cells. The final chapters of the book deal with applications: membrane protein in vitro folding and cell-free expression, solution studies, NMR, crystallography, electron microscopy, mass spectrometry, amphipol-mediated immobilization of membrane proteins, and biomedical applications. Important features of the book include introductory sections describing foundations as well as the state-of-the-art for each of the biophysical techniques discussed, and topical tables which organize a widely dispersed literature. Boxes and annexes throughout the book explain technical aspects, and twelve detailed experimental protocols, ranging from in vitro folding of membrane proteins to single-particle electron cryomicroscopy, have been contributed by and commented on by experienced users. Membrane Proteins in Aqueous Solutions offers a concise, accessible introduction to membrane protein biochemistry and biophysics, as well as comprehensive coverage of the properties and uses of conventional and non-conventional surfactants. It will be useful both in basic and applied research laboratories and as a teaching aid for students, instructors, researchers, and professionals within the field.


The Next Generation in Membrane Protein Structure Determination

The Next Generation in Membrane Protein Structure Determination

Author: Isabel Moraes

Publisher: Springer

Published: 2016-08-23

Total Pages: 188

ISBN-13: 3319350722

DOWNLOAD EBOOK

This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.