In real-world diagnostic procedures, due to the limitation of human cognitive competence, a medical expert may not conveniently use some crisp numbers to express the diagnostic information, and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing complex diagnostic information.
In real-world diagnostic procedures, due to the limitation of human cognitive competence, a medical expert may not conveniently use some crisp numbers to express the diagnostic information, and plenty of research has indicated that generalized fuzzy numbers play a significant role in describing complex diagnostic information.
Fault diagnosis is an important issue in various fields and aims to detect and identify the faults of systems, products, and processes. The cause of a fault is complicated due to the uncertainty of the actual environment. Nevertheless, it is difficult to consider uncertain factors adequately with many traditional methods. In addition, the same fault may show multiple features and the same feature might be caused by different faults.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
With the increasing automation of mechanical equipment, fault diagnosis becomes more and more important. However, the factors that cause mechanical failures are becoming more and more complex, and the uncertainty and coupling between the factors are getting higher and higher. In order to solve the given problem, this paper proposes a single-valued neutrosophic set ISVNS algorithm for processing of uncertain and inaccurate information in fault diagnosis, which generates neutrosophic set by triangular fuzzy number and introduces the formula of the improved weighted correlation coefficient.
In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology.