"Presenting state-of-the-art research into methods of wireless spectrum allocation based on game theory and mechanism design, this innovative and comprehensive book provides a strong foundation for the design of future wireless mechanisms and spectrum markets. Prominent researchers showcase a diverse range of novel insights and approaches to the increasing demand for limited spectrum resources, with a consistent emphasis on theoretical methods, analytical results and practical examples. Covering fundamental underlying principles, licensed spectrum sharing, opportunistic spectrum sharing, and wider technical and economic considerations, this singular book will be of interest to academic and industrial researchers, wireless industry practitioners, and regulators interested in the foundations of cutting-edge spectrum management"--
With the rapid growth of new wireless devices and applications over the past decade, the demand for wireless radio spectrum is increasing relentlessly. The development of cognitive radio networking provides a framework for making the best possible use of limited spectrum resources, and it is revolutionising the telecommunications industry. This book presents the fundamentals of designing, implementing, and deploying cognitive radio communication and networking systems. Uniquely, it focuses on game theory and its applications to various aspects of cognitive networking. It covers in detail the core aspects of cognitive radio, including cooperation, situational awareness, learning, and security mechanisms and strategies. In addition, it provides novel, state-of-the-art concepts and recent results. This is an ideal reference for researchers, students and professionals in industry who need to learn the applications of game theory to cognitive networking.
In the ever-evolving telecommunication industry, technological improvements alone are not able to keep up with the significant growth of mobile broadband traffic. As such, new research on communications networks is necessary to keep up with rising demand. Convergence of Broadband, Broadcast, and Cellular Network Technologies addresses the problems of broadband, broadcast, and cellular coexistence, including the increasing number of advanced mobile users and their bandwidth demands. This book will serve as a link between academia and industry, serving students, researchers, and industry professionals.
This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.
In the ever-evolving telecommunication industry, smart mobile computing devices have become increasingly affordable and powerful, leading to significant growth in the number of advanced mobile users and their bandwidth demands. Due to this increasing need, the next generation of wireless networks needs to enable solutions to bring together broadband, broadcast, and cellular technologies for global consumers. Paving the Way for 5G Through the Convergence of Wireless Systems provides innovative insights into wireless networks and cellular coexisting solutions that aim at paving the way towards 5G. Through examining data offloading, cellular technologies, and multi-edge computing, it addresses coexistence problems at different levels (i.e., physical characteristics, open access, technology-neutrality, economic characteristics, healthcare, education, energy, etc.), influencing networks to provide solutions for next generation wireless networks. Bridging research and practical solutions, this comprehensive reference source is ideally designed for graduate-level students, IT professionals and technicians, engineers, academicians, and researchers.
Edge computing is quickly becoming an important technology throughout a number of fields as businesses and industries alike embrace the benefits it can have in their companies. The streamlining of data is crucial for the development and evolution of businesses in order to keep up with competition and improve functions overall. In order to appropriately utilize edge computing to its full potential, further study is required to examine the potential pitfalls and opportunities of this innovative technology. The Research Anthology on Edge Computing Protocols, Applications, and Integration establishes critical research on the current uses, innovations, and challenges of edge computing across disciplines. The text highlights the history of edge computing and how it has been adapted over time to improve industries. Covering a range of topics such as bandwidth, data centers, and security, this major reference work is ideal for industry professionals, computer scientists, engineers, practitioners, researchers, academicians, scholars, instructors, and students.
This book covers the basic theory of mean field game (MFG) and its applications in wireless networks. It starts with an overview of the current and future state-of-the-art in 5G and 6G wireless networks. Then, a tutorial is presented for MFG, mean-field-type game (MFTG), and prerequisite fields of study such as optimal control theory and differential games. This book also includes a literature survey of MFG-based research in wireless network technologies such as ultra-dense networks (UDNs), device-to-device (D2D) communications, internet-of-things (IoT), unmanned aerial vehicles (UAVs), and mobile edge networks (MENs). Several applications of MFG and MFTG in UDNs, social networks, and multi-access edge computing networks (MECNs) are introduced as well. Applications of MFG covered in this book are divided in three parts. The first part covers three single-population MFG research works or case studies in UDNs including ultra-dense D2D networks, ultra-dense UAV networks, and dense-user MECNs. The second part centers on a multiple-population MFG (MPMFG) modeling of belief and opinion evolution in social networks. It focuses on a recently developed MPMFG framework and its application in analyzing the behavior of users in a multiple-population social network. Finally, the last part concentrates on an MFTG approach to computation offloading in MECN. The computation offloading algorithms are designed for energy- and time-efficient offloading of computation-intensive tasks in an MECN. This book targets advanced-level students, professors, researchers, scientists, and engineers in the fields of communications and networks. Industry managers and government employees working in these same fields will also find this book useful.