Mechanics of Continuous Media and Analysis of Structures is a six-chapter book that begins by elucidating the mechanics of solid continuous media. The text then describes the finite elements method, which undoubtedly dominates the methods used for structural analysis. Subsequent chapters explain the variational principles in linear elasticity, vibration of linear structure, non-linear deformations, and the shell theory. This book will be valuable to all those who need certain theoretical developments in mechanics, including mechanical engineers, economists, and mathematicians.
This volume is written by Academician Sedov who is considered by many as the leading scientist in mechanics in the USSR. This latest fourth edition helps the reader in a relatively short time to master and acquire fully the essence of many geometrical and mechanical theories.
Composites materials have aroused a great interest over the last few decades. Several applications of fibrous composites, functionally graded materials, laminated composites, nano-structured reinforcements, morphing structures, can be found in many engineering fields, such as aerospace, mechanical, naval and civil engineering. The necessity of lightweight structures, smart and adaptive systems, high-level strength, have led both the academic research and the manufacturing development to a recurring employment of these materials. Many journal papers and technical notes have been published extensively over the last seventy years in international scientific journals of different engineering fields. For this reason, the establishment of this second edition of Mechanics of Composites International Conference has appeared appropriate to continue what has been begun during the first edition occurred in 2014 at Stony Brook University (USA). MECHCOMP wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures. As a proof of this event, which has taken place in Porto (Portugal), selected plenary and key-note lectures have been collected in the present book.
From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [...] It will be very useful for both mathematicians and physicists." EMS Newsletter
Elements of Continuum Mechanics and Conservation Laws presents a systematization of different models in mathematical physics, a study of the structure of conservation laws, thermodynamical identities, and connection with criteria for well-posedness of the corresponding mathematical problems. The theory presented in this book stems from research carried out by the authors concerning the formulations of differential equations describing explosive deformations of metals. In such processes, elasticity equations are used in some zones, whereas hydrodynamics equations are stated in other zones. Plastic deformations appear in transition zones, which leads to residual stresses. The suggested model contains some relaxation terms which simulate these plastic deformations. Certain laws of thermodynamics are used in order to describe and study differential equations simulating the physical processes. This leads to the special formulation of differential equations using generalized thermodynamical potentials.
Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation
This book provides a general review of the literature on underground structures, combined with new specifications, engineering case studies, and numerical simulations based on the authors’ research. It focuses on the basic concepts, theories, and methods of the design of underground structures. After an introduction, it covers various topics, such as elastic foundation beam theory and numerical analysis methods for underground structures, as well as the design of shallow underground structures, diaphragm wall structures, shield tunnel structures, caisson structures, immersed tube structures, and integral tunnel structures. It also includes tables for calculating elastic foundation beam. This book is intended for senior undergraduate and graduate students majoring in urban underground space engineering, building engineering, highway engineering, railway engineering, bridge and tunnel engineering, water conservancy and hydropower engineering.