This book presents a unified introduction to the theory of mechanical vibrations. The general theory of the vibrating particle is the point of departure for the field of multidegree of freedom systems. Emphasis is placed in the text on the issue of continuum vibrations. The presented examples are aimed at helping the readers with understanding the theory.This book is of interest among others to mechanical, civil and aeronautical engineers concerned with the vibratory behavior of the structures. It is useful also for students from undergraduate to postgraduate level. The book is based on the teaching experience of the authors.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. For courses in vibration engineering. Building Knowledge: Concepts of Vibration in Engineering Retaining the style of previous editions, this Sixth Edition of Mechanical Vibrations effectively presents theory, computational aspects, and applications of vibration, introducing undergraduate engineering students to the subject of vibration engineering in as simple a manner as possible. Emphasising computer techniques of analysis, Mechanical Vibrations thoroughly explains the fundamentals of vibration analysis, building on the understanding achieved by students in previous undergraduate mechanics courses. Related concepts are discussed, and real-life applications, examples, problems, and illustrations related to vibration analysis enhance comprehension of all concepts and material. In the Sixth Edition, several additions and revisions have been made—including new examples, problems, and illustrations—with the goal of making coverage of concepts both more comprehensive and easier to follow.
For courses in vibration engineering. Building Knowledge: Concepts of Vibration in Engineering Retaining the style of previous editions, this Sixth Edition of Mechanical Vibrations effectively presents theory, computational aspects, and applications of vibration, introducing undergraduate engineering students to the subject of vibration engineering in as simple a manner as possible. Emphasising computer techniques of analysis, Mechanical Vibrations thoroughly explains the fundamentals of vibration analysis, building on the understanding achieved by students in previous undergraduate mechanics courses. Related concepts are discussed, and real-life applications, examples, problems, and illustrations related to vibration analysis enhance comprehension of all concepts and material. In the Sixth Edition, several additions and revisions have been made--including new examples, problems, and illustrations--with the goal of making coverage of concepts both more comprehensive and easier to follow.
MECHANICAL VIBRATIONS: THEORY AND APPLICATIONS takes an applications-based approach at teaching students to apply previously learned engineering principles while laying a foundation for engineering design. This text provides a brief review of the principles of dynamics so that terminology and notation are consistent and applies these principles to derive mathematical models of dynamic mechanical systems. The methods of application of these principles are consistent with popular Dynamics texts. Numerous pedagogical features have been included in the text in order to aid the student with comprehension and retention. These include the development of three benchmark problems which are revisited in each chapter, creating a coherent chain linking all chapters in the book. Also included are learning outcomes, summaries of key concepts including important equations and formulae, fully solved examples with an emphasis on real world examples, as well as an extensive exercise set including objective-type questions. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
The second edition of Applied Structural and Mechanical Vibrations: Theory and Methods continues the first edition’s dual focus on the mathematical theory and the practical aspects of engineering vibrations measurement and analysis. This book emphasises the physical concepts, brings together theory and practice, and includes a number of worked-out examples of varying difficulty and an extensive list of references. What’s New in the Second Edition: Adds new material on response spectra Includes revised chapters on modal analysis and on probability and statistics Introduces new material on stochastic processes and random vibrations The book explores the theory and methods of engineering vibrations. By also addressing the measurement and analysis of vibrations in real-world applications, it provides and explains the fundamental concepts that form the common background of disciplines such as structural dynamics, mechanical, aerospace, automotive, earthquake, and civil engineering. Applied Structural and Mechanical Vibrations: Theory and Methods presents the material in order of increasing complexity. It introduces the simplest physical systems capable of vibratory motion in the fundamental chapters, and then moves on to a detailed study of the free and forced vibration response of more complex systems. It also explains some of the most important approximate methods and experimental techniques used to model and analyze these systems. With respect to the first edition, all the material has been revised and updated, making it a superb reference for advanced students and professionals working in the field.
A thorough study of the oscillatory and transient motion of mechanical and structural systems, Engineering Vibrations, Second Edition presents vibrations from a unified point of view, and builds on the first edition with additional chapters and sections that contain more advanced, graduate-level topics. Using numerous examples and case studies, the author reviews basic principles, incorporates advanced abstract concepts from first principles, and weaves together physical interpretation and fundamental principles with applied problem solving. This revised version combines the physical and mathematical facets of vibration, and emphasizes the connecting ideas, concepts, and techniques.
Model, analyze, and solve vibration problems, using modern computer tools. Featuring clear explanations, worked examples, applications, and modern computer tools, William Palm's Mechanical Vibration provides a firm foundation in vibratory systems. You'll learn how to apply knowledge of mathematics and science to model and analyze systems ranging from a single degree of freedom to complex systems with two and more degrees of freedom. Separate MATLAB sections at the end of most chapters show how to use the most recent features of this standard engineering tool, in the context of solving vibration problems. The text introduces Simulink where solutions may be difficult to program in MATLAB, such as modeling Coulomb friction effects and simulating systems that contain non-linearities. Ample problems throughout the text provide opportunities to practice identifying, formulating, and solving vibration problems. KEY FEATURES Strong pedagogical approach, including chapter objectives and summaries Extensive worked examples illustrating applications Numerous realistic homework problems Up-to-date MATLAB coverage The first vibration textbook to cover Simulink Self-contained introduction to MATLAB in Appendix A Special section dealing with active vibration control in sports equipment Special sections devoted to obtaining parameter values from experimental data
An engineering major’s must have: The most comprehensive review of the required dynamics course—now updated to meet the latest curriculum and with access to Schaum’s improved app and website! Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there’s Schaum’s. More than 40 million students have trusted Schaum’s to help them succeed in the classroom and on exams. Schaum’s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum’s Outline gives you: 729 fully solved problems to reinforce knowledge 1 final practice exam Hundreds of examples with explanations of dynamics concepts Extra practice on topics such as rectilinear motion, curvilinear motion, rectangular components, tangential and normal components, and radial and transverse components Support for all the major textbooks for dynamics courses Access to revised Schaums.com website with access to 25 problem-solving videos and more. Schaum’s reinforces the main concepts required in your course and offers hundreds of practice questions to help you succeed. Use Schaum’s to shorten your study time - and get your best test scores!
The coverage of the book is quite broad and includes free and forced vibrations of 1-degree-of-freedom, multi-degree-of-freedom, and continuous systems.
Dealing with vibrations and waves, this text aims to provide understanding of the basic principles and methods of analysing various physical phenomena. The content includes the general properties of propagation, a detailed study of mechanical (elastic and acoustic) and electromagnetic waves, propagation, attenuation, dispersion, reflection, interference and diffraction of waves. It features chapters on the effect of motion of sources and observers (both classical and relativistic), emission of electromagnetic waves, standing and guided waves and a final chapter on de Broglie waves constitutes an introduction to quantum mechanics.