Geometric Control of Mechanical Systems

Geometric Control of Mechanical Systems

Author: Francesco Bullo

Publisher: Springer

Published: 2019-06-12

Total Pages: 727

ISBN-13: 1489972765

DOWNLOAD EBOOK

The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.


Mechanical Geometry Theorem Proving

Mechanical Geometry Theorem Proving

Author: Shang-Ching Chou

Publisher: Springer

Published: 2001-11-30

Total Pages: 362

ISBN-13: 9781402003301

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


Geometry, Mechanics, and Dynamics

Geometry, Mechanics, and Dynamics

Author: Dong Eui Chang

Publisher: Springer

Published: 2015-04-16

Total Pages: 506

ISBN-13: 1493924419

DOWNLOAD EBOOK

This book illustrates the broad range of Jerry Marsden’s mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.


Fundamentals of Geometry Construction

Fundamentals of Geometry Construction

Author: Jorge Angeles

Publisher: Springer Nature

Published: 2020-04-18

Total Pages: 182

ISBN-13: 3030431312

DOWNLOAD EBOOK

The textbook provides both beginner and experienced CAD users with the math behind the CAD. The geometry tools introduced here help the reader exploit commercial CAD software to its fullest extent. In fact, the book enables the reader to go beyond what CAD software packages offer in their menus. Chapter 1 summarizes the basic Linear and Vector Algebra pertinent to vectors in 3D, with some novelties: the 2D form of the vector product and the manipulation of “larger" matrices and vectors by means of block-partitioning of larger arrays. In chapter 2 the relations among points, lines and curves in the plane are revised accordingly; the difference between curves representing functions and their geometric counterparts is emphasized. Geometric objects in 3D, namely, points, planes, lines and surfaces are the subject of chapter 3; of the latter, only quadrics are studied, to keep the discussion at an elementary level, but the interested reader is guided to the literature on splines. The concept of affine transformations, at the core of CAD software, is introduced in chapter 4, which includes applications of these transformations to the synthesis of curves and surfaces that would be extremely cumbersome to produce otherwise. The book, catering to various disciplines such as engineering, graphic design, animation and architecture, is kept discipline-independent, while including examples of interest to the various disciplines. Furthermore, the book can be an invaluable complement to undergraduate lectures on CAD.


Geometry, Mechanics, and Dynamics

Geometry, Mechanics, and Dynamics

Author: Paul Newton

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 573

ISBN-13: 0387217916

DOWNLOAD EBOOK

Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.


Mechanical Geometry Theorem Proving

Mechanical Geometry Theorem Proving

Author: Shang-Ching Chou

Publisher: Springer

Published: 2001-11-30

Total Pages: 380

ISBN-13: 9781402003301

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


Geometry, Mechanics, and Control in Action for the Falling Cat

Geometry, Mechanics, and Control in Action for the Falling Cat

Author: Toshihiro Iwai

Publisher: Springer Nature

Published: 2021-04-23

Total Pages: 193

ISBN-13: 9811606889

DOWNLOAD EBOOK

The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs.


An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry

Author: Leonor Godinho

Publisher: Springer

Published: 2014-07-26

Total Pages: 476

ISBN-13: 3319086669

DOWNLOAD EBOOK

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.


Introduction to Differential Geometry for Engineers

Introduction to Differential Geometry for Engineers

Author: Brian F. Doolin

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 178

ISBN-13: 0486281949

DOWNLOAD EBOOK

This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.