Gamow Shell Model

Gamow Shell Model

Author: Nicolas Michel

Publisher: Springer Nature

Published: 2021-04-24

Total Pages: 514

ISBN-13: 3030693562

DOWNLOAD EBOOK

This book provides the first graduate-level, self-contained introduction to recent developments that lead to the formulation of the configuration-interaction approach for open quantum systems, the Gamow shell model, which provides a unitary description of quantum many-body system in different regimes of binding, and enables the unification in the description of nuclear structure and reactions. The Gamow shell model extends and generalizes the phenomenologically successful nuclear shell model to the domain of weakly-bound near-threshold states and resonances, offering a systematic tool to understand and categorize data on nuclear spectra, moments, collective excitations, particle and electromagnetic decays, clustering, elastic and inelastic scattering cross sections, and radiative capture cross sections of interest to astrophysics. The approach is of interest beyond nuclear physics and based on general properties of quasi-stationary solutions of the Schrödinger equation – so-called Gamow states. For the benefit of graduate students and newcomers to the field, the quantum-mechanical fundamentals are introduced in some detail. The text also provides a historical overview of how the field has evolved from the early days of the nuclear shell model to recent experimental developments, in both nuclear physics and related fields, supporting the unified description. The text contains many worked examples and several numerical codes are introduced to allow the reader to test different aspects of the continuum shell model discussed in the book.


Rotating Relativistic Stars

Rotating Relativistic Stars

Author: John L. Friedman

Publisher: Cambridge University Press

Published: 2013-02-11

Total Pages: 435

ISBN-13: 1107310601

DOWNLOAD EBOOK

The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.


Foundations of Perturbative QCD

Foundations of Perturbative QCD

Author: John Collins

Publisher: Cambridge University Press

Published: 2011-04-28

Total Pages: 637

ISBN-13: 1139500627

DOWNLOAD EBOOK

Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.


Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations

Author: Åke Björck

Publisher: Springer

Published: 2014-10-07

Total Pages: 812

ISBN-13: 3319050893

DOWNLOAD EBOOK

Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.


Introduction To The Theory Of The Early Universe: Hot Big Bang Theory (Second Edition)

Introduction To The Theory Of The Early Universe: Hot Big Bang Theory (Second Edition)

Author: Valery A Rubakov

Publisher: World Scientific

Published: 2017-06-29

Total Pages: 594

ISBN-13: 9813220058

DOWNLOAD EBOOK

This book is written from the viewpoint that a deep connection exists between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.Particle physics and cosmology underwent rapid development between the first and the second editions of this book. In the second edition, many chapters and sections have been revised, and numerical values of particle physics and cosmological parameters have been updated.


Flavor Physics and the TeV Scale

Flavor Physics and the TeV Scale

Author: George W. S. Hou

Publisher: Springer Science & Business Media

Published: 2009-05-20

Total Pages: 151

ISBN-13: 3540927913

DOWNLOAD EBOOK

The ?avor sector carries the largest number of parameters in the Standard Model of particle physics. With no evident symmetry principle behind its existence, it is not as well understood as the SU(3)×SU(2)×U(1) gauge interactions. Yet it tends to be underrated, sometimes even ignored, by the erudite. This is especially so on the verge of the LHC era, where the exploration of the physics of electroweak symmetry breaking at the high energy frontier would soon be the main thrust of the ?eld. Yet, the question of “Who ordered the muon?” by I. I. Rabi lingers. We do not understand why there is “family” (or generation) replication. That three generations are needed to have CP violation is a partial answer. We do not understand why there are only three generations, but Nature insists on (just about) only three active neutrinos. But then the CP violation with three generations fall far short of what is needed to generate the baryon asymmetry of the Universe. We do not understand why most fermions are so light on the weak symmetry breaking scale (v. e. v. ), yet the third-generation top quark is a v. e. v. scale particle. We do not understand why quarks and leptons look so different, in particular, why neutrinos are rather close to being massless, but then have (at least two) near maximal mixing angles. We shall not, however, concern ourselves with the neutrino sector. It has a life of its own.


The Physics of the B Factories

The Physics of the B Factories

Author: Adrian Bevan

Publisher: Springer

Published: 2015-03-23

Total Pages: 0

ISBN-13: 9783662449905

DOWNLOAD EBOOK

This comprehensive work thoroughly introduces and reviews the set of results from Belle and BaBar - after more than two decades of independent and complementary work - all the way from the detectors and the analysis tools used, up to the physics results, and the interpretation of these results. The world’s two giant B Factory collaborations, Belle at KEK and BaBar at SLAC, have successfully completed their main mission to discover and quantify CP violation in the decays of B mesons. CP violation is a necessary requirement to distinguish unambiguously between matter and antimatter. The shared primary objective of the two B Factory experiments was to determine the shape of the so-called unitarity triangle, an abstract triangle representing interactions of quarks, the elementary constituents of matter. The area of the triangle is a measure of the amount of CP violation associated with the weak force. Many other measurements have been performed by the B Factories and are also discussed in this work.


Empirical Asset Pricing Models

Empirical Asset Pricing Models

Author: Jau-Lian Jeng

Publisher: Springer

Published: 2018-03-19

Total Pages: 277

ISBN-13: 3319741926

DOWNLOAD EBOOK

This book analyzes the verification of empirical asset pricing models when returns of securities are projected onto a set of presumed (or observed) factors. Particular emphasis is placed on the verification of essential factors and features for asset returns through model search approaches, in which non-diversifiability and statistical inferences are considered. The discussion reemphasizes the necessity of maintaining a dichotomy between the nondiversifiable pricing kernels and the individual components of stock returns when empirical asset pricing models are of interest. In particular, the model search approach (with this dichotomy emphasized) for empirical model selection of asset pricing is applied to discover the pricing kernels of asset returns.


Multiple Messengers and Challenges in Astroparticle Physics

Multiple Messengers and Challenges in Astroparticle Physics

Author: Roberto Aloisio

Publisher: Springer

Published: 2018-02-27

Total Pages: 554

ISBN-13: 331965425X

DOWNLOAD EBOOK

This book, designed as a tool for young researchers and graduate students, reviews the main open problems and research lines in various fields of astroparticle physics: cosmic rays, gamma rays, neutrinos, cosmology, and gravitational physics. The opening section discusses cosmic rays of both galactic and extragalactic origin, examining experimental results, theoretical models, and possible future developments. The basics of gamma-ray astronomy are then described, including the detection methods and techniques. Galactic and extragalactic aspects of the field are addressed in the light of recent discoveries with space-borne and ground-based detectors. The review of neutrinos outlines the status of the investigations of neutrino radiation and brings together relevant formulae, estimations, and background information. Three complementary issues in cosmology are examined: observable predictions of inflation in the early universe, effects of dark energy/modified gravity in the large-scale structure of the universe, and neutrinos in cosmology and large-scale structures. The closing section on gravitational physics reviews issues relating to quantum gravity, atomic precision tests, space-based experiments, the strong field regime, gravitational waves, multi-messengers, and alternative theories of gravity.


Numerical Fourier Analysis

Numerical Fourier Analysis

Author: Gerlind Plonka

Publisher: Springer

Published: 2019-02-05

Total Pages: 624

ISBN-13: 3030043061

DOWNLOAD EBOOK

This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.