Featuring numerous examples linking theoretical concepts with real-world applications, this practical, cross-disciplinary guide will help you understand the fundamentals of radio frequency measurement of nanoscale devices. -- Résumé abrégé du livre.
Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.
In this comprehensive work, experts in the field detail recent advances in medical and biological microwave sensors and systems, with chapters on topics such as implantable sensors, wearable microwave tags, and UWB technology. Each chapter explores the theory behind the technology, as well as its design and implementation. This is supported by practical examples and details of experimental results, along with discussion of system design, design trade-offs, and possible constraints and manufacturing issues. Applications described include intracranial pressure monitoring, vital signs monitoring, and non-invasive molecular and cellular investigations. Presenting new research and advances in the field, and focusing on the state of the art in medical and biological microwave sensors, this work is an invaluable resource for enthusiastic researchers and practicing engineers in the fields of electrical engineering, biomedical engineering, and medical physics.
Drawing on over twenty years of teaching experience, this comprehensive yet self-contained text provides an in-depth introduction to the field of integrated microwave electronics. Ideal for a first course on the subject, it covers essential topics such as passive components and transistors, linear, low-noise and power amplifiers, and microwave measurements. An entire chapter is devoted to CAD techniques for analysis and design, covering examples of easy-to-medium difficulty for both linear and non-linear subsystems, and supported online by ADS and AWR project files. More advanced topics are also covered, providing an up-to-date overview of compound semiconductor technologies and treatment of electromagnetic issues and models. Readers can test their knowledge with end-of-chapter questions and numerical problems, and solutions and lecture slides are available online for instructors. This is essential reading for graduate and senior undergraduate students taking courses in microwave, radio-frequency and high-frequency electronics, as well as professional microwave engineers.
Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.
This book constitutes selected revised and extended papers from the 11th International Conference on High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production, HPCST 2021, Barnaul, Russia, in May 2021. The 32 full papers presented in this volume were thoroughly reviewed and selected form 98 submissions. The papers are organized in topical sections on Hardware for High-Performance Computing and Signal Processing; Information Technologies and Computer Simulation of Physical Phenomena; Computing Technologies in Discrete Mathematics and Decision Making; Information and Computing Technologies in Automation and Control Science; and Computing Technologies in Information Security Applications.
A comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges.