This book contains pedagogical lectures on both theoretical and experimental particle physics, cosmology, and atomic trap physics. Numerous additional contributions provide up-to-date information on new experimental results from accelerators, underground laboratories, and nuclear astrophysics. This combination of pedagogical talks and topical short discussions presents a comprehensive amount of information and latest developments to researchers.
This book contains pedagogical lectures on both theoretical and experimental particle physics, cosmology, and atomic trap physics. Numerous additional contributions provide up-to-date information on new experimental results from accelerators, underground laboratories, and nuclear astrophysics. This combination of pedagogical talks and topical short discussions presents a comprehensive amount of information and latest developments to researchers. Sample Chapter(s). Chapter 1: New Physics and the LHC (9,214 KB). Contents: New Physics and the LHC (G Altarelli); Very High Energy Cosmic Rays: Results from the Pierre Auger Observatory (C E Covault); Neutrinos at Lake Louise (S Davidson); Physics Impact of the Tevatron (D C O''Neil); Cosmology and the LHC (V Rubakov); CMK Angle Measurements from BABAR (J M Anderson); An Overview of Top Quark Analyses from the CMS Collaboration (J Andrea); Heavy Quark Production at HERA and Heavy Quark Contributions to the Proton Structure Function (D Bartsch); ATLAS Commissioning and Physics with Early Data (P J Bell); Search for Heavy Stable Charged Particles at CMS (J Chen); A High-Sensitivity Search for Charged Lepton Flavor Violation at Fermilab (E C Dukes); Prospects for CP Violation Studies at LHCb (V V Gligorov); Measurements of a 3 () at Belle (Y Horii); High P T Jets and Photons at Dy (Z Hubacek); SUSY Search at ATLAS (Y Kataoka); Neutrino Physics with the IceCube Detector (J Kirkyluk); Determination of the Strong Phase in D 0 OaAE K + C - Using Quantum-Correlated Measurements (A Lincoln); Results on Top Quark Physics at Dy (Y Peters); Quarkonium Production and Polarisation with Early Data at ATLAS (D D Price); and other papers. Readership: Graduate students, researchers and academics in high energy physics (HEP), astrophysics and atomic physics."
This thesis reports on the first studies of Standard Model photon production at the Large Hadron Collider (LHC) using the ATLAS detector. Standard Model photon production is a large background in the search for Higgs bosons decaying into photon pairs, and is thus critical to understand. The thesis explains the techniques used to reconstruct and identify photon candidates using the ATLAS detector, and describes a measurement of the production cross section for isolated prompt photons. The thesis also describes a search for the Higgs boson in which the analysis techniques used in the measurement are exploited to reduce and estimate non-prompt backgrounds in diphoton events.
The volume of these proceedings is devoted to a wide variety of items, both in theory and experiment, of particle physics such as electroweak theory, fundamental symmetries, tests of standard model and beyond, neutrino and astroparticle physics, hadron physics, gravitation and cosmology, physics at the present and future accelerators.
These proceedings contain descriptions of the latest experiments and results in a variety of hot topics, such as the growth of total cross sections, the ratio of real to imaginary parts of forward scattering amplitudes, etc. Current theories of particle interaction based on QCD were presented and confronted by the latest experimental results from FNAL, CERN, HERA and elsewhere. The theoretical situation seems less clear, or at least more open to argument and criticism, leveled by the different groups responsible and present at the workshop.
CIPANP 2009 explores areas of common interest between nuclear physicists, high energy (particle) physicists and astrophysicists. These areas range from studies of the strong interactions that bind nuclei together to physics of the very early Universe and include such topics as neutrinos, hadron physics, spin physics, heavy ion physics, QCD and heavy flavor physics. The Conference papers include descriptions of searches for "new physics", phenomena that cannot be accounted for by current theories.
Recent results from all types of high energy colliders (e⁺e⁻, pp, ep) are presented from the view point of electroweak interaction and QCD/Jet physics together with related phenomenological reviews. Expected physics at future colliders, both being built or planned, are also discussed including e+e- linear collider, pp collider and heavy ion collider.
The knowledge of the interactions of photons with hadrons has considerably improved with the study of high-energy lepton-proton collisions at HERA. The results on the partonic interactions of photons are summarized in comparison with photon-nucleon, two-photon, and proton-antiproton experiments.