Advances in Jet Substructure at the LHC

Advances in Jet Substructure at the LHC

Author: Roman Kogler

Publisher: Springer Nature

Published: 2021-05-10

Total Pages: 287

ISBN-13: 3030728587

DOWNLOAD EBOOK

This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.


Looking Inside Jets

Looking Inside Jets

Author: Simone Marzani

Publisher: Springer

Published: 2019-05-11

Total Pages: 210

ISBN-13: 3030157091

DOWNLOAD EBOOK

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.


Physics at the Large Hadron Collider

Physics at the Large Hadron Collider

Author: Amitava Datta

Publisher: Springer Science & Business Media

Published: 2010-05-30

Total Pages: 260

ISBN-13: 8184892950

DOWNLOAD EBOOK

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.


The Large Hadron Collider

The Large Hadron Collider

Author: Thomas Schörner-Sadenius

Publisher: Springer

Published: 2015-05-15

Total Pages: 554

ISBN-13: 3319150014

DOWNLOAD EBOOK

This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.


First Measurement of the Running of the Top Quark Mass

First Measurement of the Running of the Top Quark Mass

Author: Matteo M. Defranchis

Publisher: Springer Nature

Published: 2022-01-03

Total Pages: 170

ISBN-13: 3030903761

DOWNLOAD EBOOK

In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.


Quantum Field Theory and the Standard Model

Quantum Field Theory and the Standard Model

Author: Matthew D. Schwartz

Publisher: Cambridge University Press

Published: 2014

Total Pages: 869

ISBN-13: 1107034736

DOWNLOAD EBOOK

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.


The Standard Model and Beyond

The Standard Model and Beyond

Author: Ioannis John Demetrius Vergados

Publisher: World Scientific Publishing Company

Published: 2017-08-14

Total Pages: 452

ISBN-13: 9789813275775

DOWNLOAD EBOOK

This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the material of the first two chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after the SSB acquire a mass and get admixed. The various forms of the charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, at the level of first year graduate students. Examples are the evaluation of the decay widths of the gauge bosons and some cross sections for interesting processes such as Rutherford scattering, electron-proton scattering (elementary proton or described by a form factor, and inelastic scattering) and Compton scattering. After that the classic topics like the role of C, P, CP symmetries and the experimental methods needed to verify their conservation or violation are discussed in some detail. Topics beyond the standard model, like supersymmetry for pedestrians and grand unification, are discussed. To this end neutrino oscillations, dark matter and baryon asymmetry are also briefly discussed at the first year graduate level. Finally, the book contains an exhibition of recent developments in cosmology, especially from the elementary particle point of view.


Multiple Parton Interactions At The Lhc

Multiple Parton Interactions At The Lhc

Author: Paolo Bartalini

Publisher: World Scientific Publishing

Published: 2018-11-02

Total Pages: 471

ISBN-13: 981322777X

DOWNLOAD EBOOK

Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.


Physics at the Terascale

Physics at the Terascale

Author: Ian Brock

Publisher: John Wiley & Sons

Published: 2011-05-04

Total Pages: 437

ISBN-13: 3527634975

DOWNLOAD EBOOK

Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.