Fundamentals of Hot Wire Anemometry

Fundamentals of Hot Wire Anemometry

Author: Charles G. Lomas

Publisher: Cambridge University Press

Published: 2011-06-09

Total Pages: 225

ISBN-13: 0521283183

DOWNLOAD EBOOK

This 1985 book provides a summary of the theory and practice of the hot wire anemometer, an instrument used to measure the speed of fluid flow. Many techniques and uses of this instrument are discussed in detail. The author considers such topics as probe fouling, probe design, and circuit design, as well as the thermodynamics of heated wires and thin films. He also discusses measurements of turbulence, shear flows, vorticity, temperature, combined temperature and velocity, two-phase flows, and compressible flows for measurements in air, water, mercury, blood, glycerine, oil, luminous gases, and polymer solutions. The book concludes with a section on the pulsed wire anemometer and other wake-sensing anemometers. This book assumes a familiarity with basic fluid mechanics. However, mathematical descriptions occur near the end of each chapter thus allowing those with a limited mathematical background to make use of the practical details at the beginning of each chapter.


Development of an automated calibration system for hotwire anemometers

Development of an automated calibration system for hotwire anemometers

Author: Constantin Schosser

Publisher: diplom.de

Published: 2010-01-22

Total Pages: 109

ISBN-13: 3836639602

DOWNLOAD EBOOK

Inhaltsangabe:Introduction: In experimental fluid dynamic measurements hot-wire anemometry is used to record information about flow fields. Furthermore one can obtain the magnitude, the direction and even the time dependant behaviour of the fluid flow, if multiple-wire probes are in operation. The hot-wire measurement technique is based on the convective heat transfer from a heated element to the fluid flow, which is actually proportional to the velocity of the flow. So HWA is an indirect measurement technique. There are miscellaneous sensors which work properly in water or other liquids, air or in gas flows. As an example, Fig. 1.1 shows a cross-wire probe in a fluid flow, which can detect the velocity and its direction in two components, if the main flow direction is in one plane (2D flow). Predominantly HWA is a research tool for turbulent flow studies, especially transient procedures. Turbulence models have to be built to represent the characteristics of the flow in numerical simulations (CFD). Therefore only detailed experimental measurements lead to reliable information about the local velocity of a turbulent flow. This can be provided by HWA on the basis of its very high spatial and temporal resolution. Although the development of HWA started at the beginning of the 19th century and new techniques like PIV or LDA (direct methods) have been established, it is still a common device in all wind tunnel labs. The analogue output signal can be optimized by filters before signal processing. It can also be deployed to arrange a spectrum analysis, due to the high temporal resolution. Moreover, unlike the digital devices the analogue signal is densely packed. The range of application is large and leads from sub- and supersonic flows, the independency of the medium to high-temperature measurements. HWA is also affordable in contrast to LDA and PIV systems. In spite of these advantages the natural contamination of the hot-wire probe increases by and by, since the particles in the fluid flow mature themselves to the probe and finally isolate it. As this effect of disturbance causes measuring errors, the hot-wire probes have to be calibrated at frequent intervals - best before and after every data acquisition series. However, HWA is an intrusive measurement technique, thus disturbing the flow. Another disadvantage is that it is not applicable in separation and backward flow regions. The aim of this thesis is to develop an automated calibration system to [...]


Advances in Fluid Mechanics Measurements

Advances in Fluid Mechanics Measurements

Author: MOHAMED GAD-EL-HAK

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 611

ISBN-13: 3642837875

DOWNLOAD EBOOK

One cannot overemphasize the importance of studying fluids in motion or at rest for a variety of scientific and engineering endeavors. Fluid mechanics as an art reaches back into antiquity, but its rational formulation is a relatively recent undertaking. Much of the physics of a particular flow situation can be understood by conducting appropriate experiments. Flow visualization techniques offer a useful tool to establish an overall picture of a flow field and to delineate broadly its salient features before embarking on more detailed quantitative measurements. Among the single-point measurements that are particularly difficult are those in separated flows, non-Newtonian fluids, rotating flows, and nuclear aerosols. Pressure, shear stress, vorticity, and heat transfer coefficient are also difficult quantities to measure, particularly for time-dependent flows. These and other special situations are among the topics covered in this volume. Each article emphasizes the development of a particular measuring technique. The topics covered were chosen because of their importance to the field, recent appeal, and potential for future development. The articles are comprehensive and coverage is pedagogical with a bias towards recent developments.