Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal

Publisher: Springer Nature

Published: 2022-08-06

Total Pages: 634

ISBN-13: 3031038614

DOWNLOAD EBOOK

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.


Estimation in Conditionally Heteroscedastic Time Series Models

Estimation in Conditionally Heteroscedastic Time Series Models

Author: Daniel Straumann

Publisher: Springer Science & Business Media

Published: 2006-01-27

Total Pages: 239

ISBN-13: 3540269789

DOWNLOAD EBOOK

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.


Handbook of Volatility Models and Their Applications

Handbook of Volatility Models and Their Applications

Author: Luc Bauwens

Publisher: John Wiley & Sons

Published: 2012-03-22

Total Pages: 566

ISBN-13: 1118272056

DOWNLOAD EBOOK

A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.


Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2010-11-03

Total Pages: 919

ISBN-13: 1441977007

DOWNLOAD EBOOK

Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.


Maximum Simulated Likelihood Methods and Applications

Maximum Simulated Likelihood Methods and Applications

Author: William Greene

Publisher: Emerald Group Publishing

Published: 2010-12-03

Total Pages: 371

ISBN-13: 0857241508

DOWNLOAD EBOOK

This collection of methodological developments and applications of simulation-based methods were presented at a workshop at Louisiana State University in November, 2009. Topics include: extensions of the GHK simulator; maximum-simulated likelihood; composite marginal likelihood; and modelling and forecasting volatility in a bayesian approach.


Stochastic Volatility

Stochastic Volatility

Author: Neil Shephard

Publisher: Oxford University Press, USA

Published: 2005

Total Pages: 534

ISBN-13: 0199257205

DOWNLOAD EBOOK

Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.


Applied Quantitative Finance

Applied Quantitative Finance

Author: Wolfgang Karl Härdle

Publisher: Springer

Published: 2017-08-02

Total Pages: 369

ISBN-13: 3662544865

DOWNLOAD EBOOK

This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.


Dynamic Models for Volatility and Heavy Tails

Dynamic Models for Volatility and Heavy Tails

Author: Andrew C. Harvey

Publisher: Cambridge University Press

Published: 2013-04-22

Total Pages: 281

ISBN-13: 1107328780

DOWNLOAD EBOOK

The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.


Conditional Monte Carlo

Conditional Monte Carlo

Author: Michael C. Fu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 411

ISBN-13: 1461562937

DOWNLOAD EBOOK

Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry.


The Heston Model and its Extensions in Matlab and C#

The Heston Model and its Extensions in Matlab and C#

Author: Fabrice D. Rouah

Publisher: John Wiley & Sons

Published: 2013-08-01

Total Pages: 437

ISBN-13: 1118695178

DOWNLOAD EBOOK

Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.