Maximum-Entropy and Bayesian Methods in Science and Engineering

Maximum-Entropy and Bayesian Methods in Science and Engineering

Author: G. Erickson

Publisher: Springer Science & Business Media

Published: 1988-08-31

Total Pages: 338

ISBN-13: 9789027727930

DOWNLOAD EBOOK

This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.


Maximum-Entropy and Bayesian Methods in Science and Engineering

Maximum-Entropy and Bayesian Methods in Science and Engineering

Author: G. Erickson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 321

ISBN-13: 9400930496

DOWNLOAD EBOOK

This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.


Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Author: Adriano Polpo

Publisher: Springer

Published: 2018-07-14

Total Pages: 304

ISBN-13: 9783319911427

DOWNLOAD EBOOK

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.


Maximum-Entropy and Bayesian Methods in Science and Engineering

Maximum-Entropy and Bayesian Methods in Science and Engineering

Author: G. Erickson

Publisher: Springer

Published: 2014-03-14

Total Pages: 314

ISBN-13: 9789400930506

DOWNLOAD EBOOK

This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.


Data Analysis

Data Analysis

Author: Devinderjit Sivia

Publisher: OUP Oxford

Published: 2006-06-02

Total Pages: 259

ISBN-13: 0191546704

DOWNLOAD EBOOK

One of the strengths of this book is the author's ability to motivate the use of Bayesian methods through simple yet effective examples. - Katie St. Clair MAA Reviews.


Maximum Entropy and Bayesian Methods in Applied Statistics

Maximum Entropy and Bayesian Methods in Applied Statistics

Author: James H. Justice

Publisher: Cambridge University Press

Published: 2009-01-11

Total Pages: 0

ISBN-13: 9780521096034

DOWNLOAD EBOOK

This collection of papers by leading researchers in their respective fields contains contributions showing the use of the maximum entropy method in many of the fields in which it finds application. In the physical, mathematical and biological sciences it is often necessary to make inferences based on insufficient data. The problem of choosing one among the many possible conclusions or models which are compatible with the data may be resolved in a variety of ways. A particularly appealing method is to choose the solution which maximizes entropy in the sense that the conclusion or model honours the observed data but implies no further assumptions not warranted by the data. The maximum entropy principle has been growing in importance and acceptance in many fields, perhaps most notably statistical physics, astronomy, geophysics, signal processing, image analysis and physical chemistry. The papers included in this volume touch on most of the current areas of research activity and application, and will be of interest to research workers in all fields in which the maximum entropy method may be applied.


Bayesian Logical Data Analysis for the Physical Sciences

Bayesian Logical Data Analysis for the Physical Sciences

Author: Phil Gregory

Publisher: Cambridge University Press

Published: 2005-04-14

Total Pages: 498

ISBN-13: 113944428X

DOWNLOAD EBOOK

Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.


Maximum-Entropy and Bayesian Methods in Science and Engineering

Maximum-Entropy and Bayesian Methods in Science and Engineering

Author: G. Erickson

Publisher: Springer

Published: 2012-02-29

Total Pages: 440

ISBN-13: 9789401090568

DOWNLOAD EBOOK

This volume has its origin in the Fifth, Sixth and Seventh Workshops on "Maximum-Entropy and Bayesian Methods in Applied Statistics", held at the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because most of the papers in this volume are in the nature of advancing theory or solving specific problems, as opposed to status reports, it is believed that the contents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. These workshops and their proceedings could not have been brought to their final form without the support or help of a number of people.