Maximal Subellipticity

Maximal Subellipticity

Author: Brian Street

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-07-03

Total Pages: 768

ISBN-13: 3111085643

DOWNLOAD EBOOK

Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.


Integral Representation Theory

Integral Representation Theory

Author: Jaroslav Lukeš

Publisher: Walter de Gruyter

Published: 2010

Total Pages: 732

ISBN-13: 3110203200

DOWNLOAD EBOOK

This monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications


Wetting of Real Surfaces

Wetting of Real Surfaces

Author: Edward Yu Bormashenko

Publisher:

Published: 2013

Total Pages: 196

ISBN-13:

DOWNLOAD EBOOK

The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data.


USCO and Quasicontinuous Mappings

USCO and Quasicontinuous Mappings

Author: L’ubica Holá

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-10-25

Total Pages: 319

ISBN-13: 3110750228

DOWNLOAD EBOOK

This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.