Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems

Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems

Author: Igor Burban

Publisher: American Mathematical Soc.

Published: 2017-07-13

Total Pages: 134

ISBN-13: 1470425378

DOWNLOAD EBOOK

In this article the authors develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. The authors' approach is illustrated on the case of k as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.


Maximal Abelian Sets of Roots

Maximal Abelian Sets of Roots

Author: R. Lawther

Publisher: American Mathematical Soc.

Published: 2018-01-16

Total Pages: 234

ISBN-13: 147042679X

DOWNLOAD EBOOK

In this work the author lets be an irreducible root system, with Coxeter group . He considers subsets of which are abelian, meaning that no two roots in the set have sum in . He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of : for each -orbit of maximal abelian sets we provide an explicit representative , identify the (setwise) stabilizer of in , and decompose into -orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian -subgroups of finite groups of Lie type over fields of characteristic . Parts of the work presented here have been used to confirm the -rank of , and (somewhat unexpectedly) to obtain for the first time the -ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work concerns those of exceptional type. In these root systems the author introduces the notion of a radical set; such a set corresponds to a subgroup of a simple algebraic group lying in the unipotent radical of a certain maximal parabolic subgroup. The classification of radical maximal abelian sets for the larger root systems of exceptional type presents an interesting challenge; it is accomplished by converting the problem to that of classifying certain graphs modulo a particular equivalence relation.


On Non-Generic Finite Subgroups of Exceptional Algebraic Groups

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups

Author: Alastair J. Litterick

Publisher: American Mathematical Soc.

Published: 2018-05-29

Total Pages: 168

ISBN-13: 1470428377

DOWNLOAD EBOOK

The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.


Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow

Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow

Author: Zhou Gang

Publisher: American Mathematical Soc.

Published: 2018-05-29

Total Pages: 90

ISBN-13: 1470428407

DOWNLOAD EBOOK

The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are $C^3$-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, and they obtain detailed asymptotics of that singularity formation. The results show in a precise way that mcf solutions become asymptotically rotationally symmetric near a neckpinch singularity.


Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem

Author: Anne-Laure Dalibard

Publisher: American Mathematical Soc.

Published: 2018-05-29

Total Pages: 118

ISBN-13: 1470428350

DOWNLOAD EBOOK

This paper is concerned with a complete asymptotic analysis as $E \to 0$ of the Munk equation $\partial _x\psi -E \Delta ^2 \psi = \tau $ in a domain $\Omega \subset \mathbf R^2$, supplemented with boundary conditions for $\psi $ and $\partial _n \psi $. This equation is a simple model for the circulation of currents in closed basins, the variables $x$ and $y$ being respectively the longitude and the latitude. A crude analysis shows that as $E \to 0$, the weak limit of $\psi $ satisfies the so-called Sverdrup transport equation inside the domain, namely $\partial _x \psi ^0=\tau $, while boundary layers appear in the vicinity of the boundary.


Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

Author: Donatella Daniell

Publisher: American Mathematical Soc.

Published: 2017-09-25

Total Pages: 116

ISBN-13: 1470425475

DOWNLOAD EBOOK

The authors give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren's monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set.


Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori

Author: Xiao Xiong

Publisher: American Mathematical Soc.

Published: 2018-03-19

Total Pages: 130

ISBN-13: 1470428067

DOWNLOAD EBOOK

This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative -torus (with a skew symmetric real -matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces.


Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries

Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries

Author: Francis Nier

Publisher: American Mathematical Soc.

Published: 2018-03-19

Total Pages: 156

ISBN-13: 1470428024

DOWNLOAD EBOOK

This article is concerned with the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply nice spectral properties as well as exponential decay properties for the associated semigroup. Admissible boundary conditions cover a wide range of applications for the usual scalar Kramer-Fokker-Planck equation or Bismut's hypoelliptic laplacian.


On Operads, Bimodules and Analytic Functors

On Operads, Bimodules and Analytic Functors

Author: Nicola Gambino

Publisher: American Mathematical Soc.

Published: 2017-09-25

Total Pages: 122

ISBN-13: 1470425769

DOWNLOAD EBOOK

The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.