Orthogonal Matrix-valued Polynomials and Applications

Orthogonal Matrix-valued Polynomials and Applications

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 220

ISBN-13: 3034854722

DOWNLOAD EBOOK

This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible.


Frontiers In Orthogonal Polynomials And Q-series

Frontiers In Orthogonal Polynomials And Q-series

Author: M Zuhair Nashed

Publisher: World Scientific

Published: 2018-01-12

Total Pages: 577

ISBN-13: 981322889X

DOWNLOAD EBOOK

This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.


Hypergeometric Orthogonal Polynomials and Their q-Analogues

Hypergeometric Orthogonal Polynomials and Their q-Analogues

Author: Roelof Koekoek

Publisher: Springer Science & Business Media

Published: 2010-03-18

Total Pages: 584

ISBN-13: 364205014X

DOWNLOAD EBOOK

The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).


Matrix Polynomials

Matrix Polynomials

Author: I. Gohberg

Publisher: SIAM

Published: 2009-07-23

Total Pages: 423

ISBN-13: 0898716810

DOWNLOAD EBOOK

This book is the definitive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree. It has applications in many areas, such as differential equations, systems theory, the Wiener-Hopf technique, mechanics and vibrations, and numerical analysis. Although there have been significant advances in some quarters, this work remains the only systematic development of the theory of matrix polynomials. The book is appropriate for students, instructors, and researchers in linear algebra, operator theory, differential equations, systems theory, and numerical analysis. Its contents are accessible to readers who have had undergraduate-level courses in linear algebra and complex analysis.


Orthogonal Polynomials

Orthogonal Polynomials

Author: Paul Nevai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 9400905017

DOWNLOAD EBOOK

This volume contains the Proceedings of the NATO Advanced Study Institute on "Orthogonal Polynomials and Their Applications" held at The Ohio State University in Columbus, Ohio, U.S.A. between May 22,1989 and June 3,1989. The Advanced Study Institute primarily concentrated on those aspects of the theory and practice of orthogonal polynomials which surfaced in the past decade when the theory of orthogonal polynomials started to experience an unparalleled growth. This progress started with Richard Askey's Regional Confer ence Lectures on "Orthogonal Polynomials and Special Functions" in 1975, and subsequent discoveries led to a substantial revaluation of one's perceptions as to the nature of orthogonal polynomials and their applicability. The recent popularity of orthogonal polynomials is only partially due to Louis de Branges's solution of the Bieberbach conjecture which uses an inequality of Askey and Gasper on Jacobi polynomials. The main reason lies in their wide applicability in areas such as Pade approximations, continued fractions, Tauberian theorems, numerical analysis, probability theory, mathematical statistics, scattering theory, nuclear physics, solid state physics, digital signal processing, electrical engineering, theoretical chemistry and so forth. This was emphasized and convincingly demonstrated during the presentations by both the principal speakers and the invited special lecturers. The main subjects of our Advanced Study Institute included complex orthogonal polynomials, signal processing, the recursion method, combinatorial interpretations of orthogonal polynomials, computational problems, potential theory, Pade approximations, Julia sets, special functions, quantum groups, weighted approximations, orthogonal polynomials associated with root systems, matrix orthogonal polynomials, operator theory and group representations.


Orthogonal Polynomials

Orthogonal Polynomials

Author: Gabor Szegš

Publisher: American Mathematical Soc.

Published: 1939-12-31

Total Pages: 448

ISBN-13: 0821810235

DOWNLOAD EBOOK

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.


Asymptotics for Orthogonal Polynomials

Asymptotics for Orthogonal Polynomials

Author: Walter Van Assche

Publisher: Springer

Published: 2006-11-14

Total Pages: 207

ISBN-13: 354047711X

DOWNLOAD EBOOK

Recently there has been a great deal of interest in the theory of orthogonal polynomials. The number of books treating the subject, however, is limited. This monograph brings together some results involving the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity, assuming only a basic knowledge of real and complex analysis. An extensive treatment, starting with special knowledge of the orthogonality measure, is given for orthogonal polynomials on a compact set and on an unbounded set. Another possible approach is to start from properties of the coefficients in the three-term recurrence relation for orthogonal polynomials. This is done using the methods of (discrete) scattering theory. A new method, based on limit theorems in probability theory, to obtain asymptotic formulas for some polynomials is also given. Various consequences of all the results are described and applications are given ranging from random matrices and birth-death processes to discrete Schrödinger operators, illustrating the close interaction with different branches of applied mathematics.