Matrix Methods: Theory, Algorithms And Applications - Dedicated To The Memory Of Gene Golub

Matrix Methods: Theory, Algorithms And Applications - Dedicated To The Memory Of Gene Golub

Author: Vadim Olshevsky

Publisher: World Scientific

Published: 2010-04-05

Total Pages: 604

ISBN-13: 9814469556

DOWNLOAD EBOOK

Compared to other books devoted to matrices, this volume is unique in covering the whole of a triptych consisting of algebraic theory, algorithmic problems and numerical applications, all united by the essential use and urge for development of matrix methods. This was the spirit of the 2nd International Conference on Matrix Methods and Operator Equations from 23-27 July 2007 in Moscow that was organized by Dario Bini, Gene Golub, Alexander Guterman, Vadim Olshevsky, Stefano Serra-Capizzano, Gilbert Strang and Eugene Tyrtyshnikov.Matrix methods provide the key to many problems in pure and applied mathematics. However, linear algebra theory, numerical algorithms and matrices in FEM/BEM applications usually live as if in three separate worlds. In this volume, maybe for the first time ever, they are compiled together as one entity as it was at the Moscow meeting, where the algebraic part was impersonated by Hans Schneider, algorithms by Gene Golub, and applications by Guri Marchuk. All topics intervened in plenary sessions are specially categorized into three sections of this volume.The soul of the meeting was Gene Golub, who rendered a charming “Golub's dimension” to the three main axes of the conference topics. This volume is dedicated in gratitude to his memory.


Algebraic Methods in Statistics and Probability II

Algebraic Methods in Statistics and Probability II

Author: Marlos A. G. Viana

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 358

ISBN-13: 0821848917

DOWNLOAD EBOOK

A decade after the publication of Contemporary Mathematics Vol. 287, the present volume demonstrates the consolidation of important areas, such as algebraic statistics, computational commutative algebra, and deeper aspects of graphical models. --


Mathematical Aspects of Computer and Information Sciences

Mathematical Aspects of Computer and Information Sciences

Author: Daniel Slamanig

Publisher: Springer Nature

Published: 2020-03-18

Total Pages: 469

ISBN-13: 3030431207

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 8th International Conference on Mathematical Aspects of Computer and Information Sciences, MACIS 2019, held in Gebze, Turkey, in November 2019. The 22 revised papers and 14 short papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in the following topical sections: algorithms and foundation; security and cryptography; combinatorics, codes, designs and graphs; data modeling and machine learning; tools and software track.


Tensor Numerical Methods in Quantum Chemistry

Tensor Numerical Methods in Quantum Chemistry

Author: Venera Khoromskaia

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-06-11

Total Pages: 298

ISBN-13: 3110365839

DOWNLOAD EBOOK

The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.


Recent Trends in Analysis of Images, Social Networks and Texts

Recent Trends in Analysis of Images, Social Networks and Texts

Author: Evgeny Burnaev

Publisher: Springer Nature

Published: 2022-08-29

Total Pages: 230

ISBN-13: 3031151682

DOWNLOAD EBOOK

This book constitutes revised selected papers of the 10th International Conference on Analysis of Images, Social Networks and Texts, AIST 2021, held in Tbilisi, Georgia, in December 2021. Due to the COVID-19 pandemic the conference was held in hybrid mode. The 17 full papers were carefully reviewed and selected from 118 submissions, out of which 92 were sent to peer review. The papers are organized in topical sections on ​natural language processing; computer vision; data analysis and machine learning; social network analysis; theoretical machine learning and optimisation.


Lattice dynamics

Lattice dynamics

Author: Johan Tidholm

Publisher: Linköping University Electronic Press

Published: 2020-11-02

Total Pages: 76

ISBN-13: 9179297595

DOWNLOAD EBOOK

The reason to perform calculations in material science usually falls into one of two categories: to predict or explain the origin of material properties. This thesis covers first-principle calculations for solids at extreme conditions, from both of the two mentioned categories. I primarily have studied the effects of high-pressure and high-temperature on lattice dynamics, mechanical and electronic properties. To treat the effects of temperature, ab initio molecular dynamics (AIMD) simulations and self-consistent phonon calculations, based on density functional theory, have been utilised. These approaches account for the temperature effects by considering thermally excited supercells as samples of a statistical ensemble. To extract properties from this representation, I have used methods which maps the supercell data to a unit cell representation or fits it to a simple model Hamiltonian. The small displacement method was used to analyse the dynamical stability for nitrides and polymorphs of silica, synthesised at high-pressure in a diamond anvil cell. The nitride compounds consist of a high amount of nitrogen either as chains, forming a porous framework together with transition metal atoms or as dinitrogen molecules, occupying the channels of the framework. The nitrogen chains consist of single- or double-bonded nitrogen atoms, making these compounds highly energetic. Polymorphs of silica can be used to model deep Earth liquids. These new polymorphs, named coesite-IV and coesite-V, consist of four-, five-, and six-oriented silicon. Some of the octahedra of the six-oriented silicon atoms, of these new phases, are sharing faces, which according to Pauling's third rule would make them highly unstable. My phonon calculations indicate these phases to be dynamically stable. Furthermore, my calculations predict higher compressibility for these new phases compared to the competing ones. By modelling silicate melts with coesite-IV and coesite-V, a more complex and compressible structure is expected, affecting the predicted seismic behaviour. I studied Kohn anomalies for body-centered cubic niobium by simulating this material with self-consistent phonon calculations. The electronic structure was studied by using a band unfolding technique, for which I obtained an effective unit cell representation of the electronic structure at elevated temperatures. Temperature primarily smeared the electronic states but did not induce significant shifts of the bands. In parallel, the anharmonicity of this system was studied using the temperature dependent effective potential method. Even close to the melting temperature, this element is remarkably harmonic. The experimentally observed disappearance of the Kohn anomalies with increased temperature is predominantly dependent, according to my calculations, on the temperature-induced smearing of the electronic states. Using stress-strain relations, accurate high-temperature elastic properties were predicted for Ti0.5Al0.5N. The simulations were performed with AIMD. The stresses were fitted using the least-squares method to a linear expression from which the elastic constants were derived. The results were compared with previously performed calculations that employed additional approximations. The results of the symmetry imposed force constant temperature dependent effective potential (SIFC-TDEP) method agrees well with our results. I also compared my results with TiN calculations that employed a similar methodology. My and the SIFC-TDEP results are reporting lower values for the polycrystalline moduli than the calculations for TiN. The data I generated were also used for a machine learned interatomic potential method, where moment tensor potentials were trained and evaluated, using this data. Den här avhandlingen handlar om beräkningar för material. När materialberäkningar utförs är det antingen för att förutsäga eller förklara egenskaper. De beräkningar som jag har gjort i denna avhandling är baserade på fundamentala fysiska lagar. Detta betyder att de är rent baserade på teori, och inte har anpassats efter resultat av experiment. Jag har i mitt arbete använt mig mycket utav en teori som kallas gitter dynamik. Den är definierad för periodiska material, det vill säga att atomerna i dessa material upprepas i periodiska mönster. Vi kan då anta att det finns en jämviktspunkt för alla atomerna, som de vibrerar omkring. Dessa vibrationer kan beskrivas som om atomerna påverkar varandra med fiktiva fjädrar. Genom att beräkna styrkan för dessa fjädrar kan vi beskriva vibrationerna av atomerna. Dessa vibrationer i sin tur är avgörande för materialets egenskaper. För att beskriva ett material vid en specifik temperatur har jag använt mig utav olika metoder för att simulera det. En simulering kan ses som ett “dator experiment”. Problemet är dock hur vi ska mäta egenskaperna i simuleringen. Ju större och mera komplex en simulering är, desto svårare blir det att beräkna egenskaperna av det simulerade materialet. Vi hamnar i en situation likt den vi skulle befinna oss om vi hade gjort ett experiment i verkligheten, och tvingas använda förenklade modeler för att kunna tolka resultatet. Jag har därför använt mig utav metoder för att utvinna vibrationer av atomer, elektrontillstånd eller elastiska egenskaper, specifikt utvecklade för att användas på denna typ utav simuleringar. Mitt arbete har kretsat kring hur dessa egenskaper påverkas av extrema temperaturer och tryck. De beräkningar jag har utfört vid höga tryck har varit för nyupptäckta nitrider och faser av kiseldioxid. Nitriderna är porösa material som innehåller en stor mängd kväve. Det höga kväveinehållet gör så att det lagras en stor mängd kemisk energi i enkel- och dubbelbindningar mellan kväveatomerna. De nya faserna av kiseldioxid har en betydelse för vår förståelse av jordens inre. Deras existens öppnar upp för att det kan finnas mera komplexa och ihoptryckbara flytande material, under jordens nedre mantel, än vad tidigare har varit antaget. Mina beräkningar har bekräftat strukturerna för dessa nyupptäckta material. Vid höga temperaturer har jag studerat för metallen niob hur vibrationerna av atomerna är relaterade till olika elektrontillstånd. För specifika vibrationer ökar frekvensen med ökad temperatur. Detta är något ovanligt eftersom vibrationernas frekvenser vanligtvis brukar minska med ökad temperatur. Mina simulering för denna metal överensstämmer med resultat från experiment. Orsaken till varför visa vibrationers frekvenser ökar kan jag förklara med att elektrontillståndens enskilda energier varierar över tid på grund av den ökade temperaturen. Jag har även använt mig av simuleringar för att beräkna elastiska egenskaper av legeringen Ti0.5Al0.5N. Ti1?xAlxN legeringar används som beläggningar på skärverktyg som används för metall. För att öka effektiviteten av beläggningen, behövs det detaljerad kunskap av dess mekaniska egenskaper för den temperatur som de används vid. Jag beräknade därför så noggrant som möjligt de elastiska egenskaperna för Ti0.5Al0.5N. Dessa beräkningar är avsedda för att användas som en referens för andra beräkningsmässigt billigare metoder. Datan som genererades från mina simuleringar användes även för en sådan metod, baserad på maskininlärning.


Multivariate, Multilinear and Mixed Linear Models

Multivariate, Multilinear and Mixed Linear Models

Author: Katarzyna Filipiak

Publisher: Springer Nature

Published: 2021-10-01

Total Pages: 357

ISBN-13: 3030754944

DOWNLOAD EBOOK

This book presents the latest findings on statistical inference in multivariate, multilinear and mixed linear models, providing a holistic presentation of the subject. It contains pioneering and carefully selected review contributions by experts in the field and guides the reader through topics related to estimation and testing of multivariate and mixed linear model parameters. Starting with the theory of multivariate distributions, covering identification and testing of covariance structures and means under various multivariate models, it goes on to discuss estimation in mixed linear models and their transformations. The results presented originate from the work of the research group Multivariate and Mixed Linear Models and their meetings held at the Mathematical Research and Conference Center in Będlewo, Poland, over the last 10 years. Featuring an extensive bibliography of related publications, the book is intended for PhD students and researchers in modern statistical science who are interested in multivariate and mixed linear models.


Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems

Author: Yousef Saad

Publisher: SIAM

Published: 2011-01-01

Total Pages: 292

ISBN-13: 9781611970739

DOWNLOAD EBOOK

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.


Accuracy and Stability of Numerical Algorithms

Accuracy and Stability of Numerical Algorithms

Author: Nicholas J. Higham

Publisher: SIAM

Published: 2002-01-01

Total Pages: 710

ISBN-13: 9780898718027

DOWNLOAD EBOOK

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.


Subspace Identification for Linear Systems

Subspace Identification for Linear Systems

Author: Peter van Overschee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1461304652

DOWNLOAD EBOOK

Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.