Matrix Methods And Fractional Calculus

Matrix Methods And Fractional Calculus

Author: Arak M Mathai

Publisher: World Scientific

Published: 2017-11-10

Total Pages: 291

ISBN-13: 9813227540

DOWNLOAD EBOOK

Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.


Matrix Methods and Fractional Calculus

Matrix Methods and Fractional Calculus

Author: A. M. Mathai

Publisher: World Scientific Publishing Company

Published: 2017

Total Pages: 272

ISBN-13: 9789813227521

DOWNLOAD EBOOK

Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.


Fractional Calculus and Fractional Differential Equations

Fractional Calculus and Fractional Differential Equations

Author: Varsha Daftardar-Gejji

Publisher: Springer

Published: 2019-08-10

Total Pages: 180

ISBN-13: 9811392277

DOWNLOAD EBOOK

This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.


Fractional Calculus

Fractional Calculus

Author: Dumitru Baleanu

Publisher: World Scientific

Published: 2012

Total Pages: 426

ISBN-13: 9814355216

DOWNLOAD EBOOK

The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives of elementary functions, and so on. This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models. All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book was written with a trade-off in mind between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice. Numerical code is also provided.


The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order

The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order

Author:

Publisher: Elsevier

Published: 1974-09-05

Total Pages: 252

ISBN-13: 0080956203

DOWNLOAD EBOOK

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering


Fractional Differential Equations: Numerical Methods for Applications

Fractional Differential Equations: Numerical Methods for Applications

Author: Matthew Harker

Publisher: Springer

Published: 2020-01-25

Total Pages: 466

ISBN-13: 9783030323769

DOWNLOAD EBOOK

This book provides a comprehensive set of practical tools for exploring and discovering the world of fractional calculus and its applications, and thereby a means of bridging the theory of fractional differential equations (FDE) with real-world facts. These tools seamlessly blend centuries old numerical methods such as Gaussian quadrature that have stood the test of time with pioneering concepts such as hypermatrix equations to harness the emerging capabilities of modern scientific computing environments. This unique fusion of old and new leads to a unified approach that intuitively parallels the classic theory of differential equations, and results in methods that are unprecedented in computational speed and numerical accuracy. The opening chapter is an introduction to fractional calculus that is geared towards scientists and engineers. The following chapter introduces the reader to the key concepts of approximation theory with an emphasis on the tools of numerical linear algebra. The third chapter provides the keystone for the remainder of the book with a comprehensive set of methods for the approximation of fractional order integrals and derivatives. The fourth chapter describes the numerical solution of initial and boundary value problems for FDE of a single variable, both linear and nonlinear. Moving to two, three, and four dimensions, the ensuing chapter is devoted to a novel approach to the numerical solution of partial FDE that leverages the little-known one-to-one relation between partial differential equations and matrix and hypermatrix equations. The emphasis on applications culminates in the final chapter by addressing inverse problems for ordinary and partial FDE, such as smoothing for data analytics, and the all-important system identification problem. Over a century ago, scientists such as Ludwig Boltzmann and Vito Volterra formulated mathematical models of real materials that -- based on physical evidence -- integrated the history of the system. The present book will be invaluable to students and researchers in fields where analogous phenomena arise, such as viscoelasticity, rheology, polymer dynamics, non-Newtonian fluids, bioengineering, electrochemistry, non-conservative mechanics, groundwater hydrology, NMR and computed tomography, mathematical economics, thermomechanics, anomalous diffusion and transport, control theory, supercapacitors, and genetic algorithms, to name but a few. These investigators will be well-equipped with reproducible numerical methods to explore and discover their particular field of application of FDE.


Numerical Methods for Fractional Calculus

Numerical Methods for Fractional Calculus

Author: Changpin Li

Publisher: CRC Press

Published: 2015-05-19

Total Pages: 300

ISBN-13: 148225381X

DOWNLOAD EBOOK

Numerical Methods for Fractional Calculus presents numerical methods for fractional integrals and fractional derivatives, finite difference methods for fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs), and finite element methods for FPDEs.The book introduces the basic definitions and propertie


Fractional Calculus with its Applications in Engineering and Technology

Fractional Calculus with its Applications in Engineering and Technology

Author: Yi Yang

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 95

ISBN-13: 303179625X

DOWNLOAD EBOOK

This book aims to provide the basic theory of fractional calculus and its applications based on practical schemes and approaches, illustrated with applicable engineering and technical examples, especially focusing on the fractional-order controller design. In the development of this book, the essential theorems and facts in the first two chapters are proven with rigorous mathematical analyses. In addition, the commonly used definitions of Grünwald-Letnikov, Riemann-Liouville, Caputo, and Miller-Ross fractional derivatives are introduced with their properties proved and linked to fractional-order controller design. The last chapter presents several enlightening scenarios of fractional-order control designs, for example, the suppression of machining chatter, the nonlinear motion control of a multilink robot, the simultaneous tracking and stabilization control of a rotary inverted pendulum, and the idle speed control of an internal combustion engine (ICE).


Fractional Calculus: Models And Numerical Methods (Second Edition)

Fractional Calculus: Models And Numerical Methods (Second Edition)

Author: Juan J Trujillo

Publisher: World Scientific

Published: 2016-09-15

Total Pages: 477

ISBN-13: 9813140054

DOWNLOAD EBOOK

This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book will keep in mind the trade-off between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice.The second edition of the book has been expanded and now includes a discussion of additional, newly developed numerical methods for fractional calculus and a chapter on the application of fractional calculus for modeling processes in the life sciences.


Numerical Methods for Fractional Differentiation

Numerical Methods for Fractional Differentiation

Author: Kolade M. Owolabi

Publisher: Springer Nature

Published: 2019-10-14

Total Pages: 328

ISBN-13: 9811500983

DOWNLOAD EBOOK

This book discusses numerical methods for solving partial differential and integral equations, as well as ordinary differential and integral equations, involving fractional differential and integral operators. Differential and integral operators presented in the book include those with exponential decay law, known as Caputo–Fabrizio differential and integral operators, those with power law, known as Riemann–Liouville fractional operators, and those for the generalized Mittag–Leffler function, known as the Atangana–Baleanu fractional operators. The book reviews existing numerical schemes associated with fractional operators including those with power law, while also highlighting new trends in numerical schemes for recently introduced differential and integral operators. In addition, the initial chapters address useful properties of each differential and integral fractional operator. Methods discussed in the book are subsequently used to solved problems arising in many fields of science, technology, and engineering, including epidemiology, chaos, solitons, fractals, diffusion, groundwater, and fluid mechanics. Given its scope, the book offers a valuable resource for graduate students of mathematics and engineering, and researchers in virtually all fields of science, technology, and engineering, as well as an excellent addition to libraries.