Matrices in Combinatorics and Graph Theory

Matrices in Combinatorics and Graph Theory

Author: Bolian Liu

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 317

ISBN-13: 1475731655

DOWNLOAD EBOOK

Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.


Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Author: Jason J. Molitierno

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 423

ISBN-13: 1439863393

DOWNLOAD EBOOK

On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o


A Combinatorial Approach to Matrix Theory and Its Applications

A Combinatorial Approach to Matrix Theory and Its Applications

Author: Richard A. Brualdi

Publisher: CRC Press

Published: 2008-08-06

Total Pages: 288

ISBN-13: 9781420082241

DOWNLOAD EBOOK

Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.


Combinatorics and Graph Theory

Combinatorics and Graph Theory

Author: John Harris

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 392

ISBN-13: 0387797114

DOWNLOAD EBOOK

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.


Combinatorial Matrix Classes

Combinatorial Matrix Classes

Author: Richard A. Brualdi

Publisher: Cambridge University Press

Published: 2006-08-10

Total Pages: 26

ISBN-13: 0521865654

DOWNLOAD EBOOK

A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date.


Combinatorial Matrix Theory

Combinatorial Matrix Theory

Author: Richard A. Brualdi

Publisher: Birkhäuser

Published: 2018-03-31

Total Pages: 228

ISBN-13: 3319709534

DOWNLOAD EBOOK

This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.


Graph Theory and Sparse Matrix Computation

Graph Theory and Sparse Matrix Computation

Author: Alan George

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 1461383692

DOWNLOAD EBOOK

When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.


Graphs and Matrices

Graphs and Matrices

Author: Ravindra B. Bapat

Publisher: Springer

Published: 2014-09-19

Total Pages: 197

ISBN-13: 1447165691

DOWNLOAD EBOOK

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.


Spectral Radius of Graphs

Spectral Radius of Graphs

Author: Dragan Stevanovic

Publisher: Academic Press

Published: 2014-10-13

Total Pages: 167

ISBN-13: 0128020970

DOWNLOAD EBOOK

Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research. - Dedicated coverage to one of the most prominent graph eigenvalues - Proofs and open problems included for further study - Overview of classical topics such as spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem


Algebraic Graph Theory

Algebraic Graph Theory

Author: Ulrich Knauer

Publisher: Walter de Gruyter

Published: 2011-09-29

Total Pages: 325

ISBN-13: 311025509X

DOWNLOAD EBOOK

Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.