Maths in 100 Key Breakthroughs presents a series of essays explaining the fundamentals of the most important maths concepts you really need to know. Richard Elwes profiles the groundbreaking and front-of-mind discoveries that have had a profound influence on our way of life and understanding. From the origins of counting some 35,000 years ago, right up to the very latest breakthroughs - such as Wiles' proof of Fermat's Last Theorem and Cook & Wolfram's Rule 110 - Maths in 100 Key Breakthroughs tells a story of discovery, invention, painstaking progress and inspired leaps of the imagination.
Richard Elwes is a writer, teacher and researcher in Mathematics, visiting fellow at the University of Leeds, and contributor to numerous popular science magazines. He is a committed and recognized popularizer of mathematics. Of Elwes, Sonder Books 2011 Standouts said, "Dr. Elwes is brilliant at giving the reader the broad perspective, with enough details to fascinate, rather than confuse." Math in 100 Key Breakthroughs offers a series of short, clear-eyed essays explaining the fundamentals of the mathematical concepts everyone should know. Professor Richard Elwes profiles the most important, groundbreaking, and astonishing discoveries, which together have profoundly influenced our understanding of the universe. From the origins of counting--traced back to more than 35,000 years ago--to such contemporary breakthroughs as Wiles' Proof of Fermat's Last Theorem and Cook & Woolfram's Rule 110, this compulsively readable book tells the story of discovery, invention, and inspiration that have led to humankind's most important mathematical achievements.
Science in 100 Key Breakthroughs presents a series of clear and concise essays that explain the fundamentals of some of the most exciting and important science concepts you really need to know. Paul Parsons profiles the important, ground-breaking, and front-of-mind scientific discoveries that have had a profound influence on our way of life and will grow in importance with our advancing understanding. In 100 sections, this book provides an overview of the history of Western science, from astronomy and physics to geology, biology and psychology and everything in between. Starting with the origins of counting more than 35,000 years ago, Science in 100 Key Breakthroughs tells a rich and fascinating story of discovery, invention, gradual progress and inspired leaps of the imagination. Many key concepts and discoveries are defined and discussed including: The circumference of the Earth, Chaos theory, Algebra, Relativity, Newton's Principia, Brownian motion, Pi, Wave/particle duality, Germ theory, The computer, X-rays, The double helix, Viruses, The human genome. Readable, informative and thought-provoking, this is the ideal introduction to cutting-edge science and the essential overview for anyone who wants to learn more about these often daunting but increasingly essential subjects.
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.
Mathematics often gets a bad press. Describing someone as 'calculating' or 'rational' is hardly as flattering as being labelled 'artistic' or 'creative' and mathematicians in movies or novels are often portrayed as social misfits who rarely get the guy or girl. No wonder some folks say 'oh I don't care for mathematics, I was never any good at it' with a wistful sense of pride. Yet professional mathematicians talk of the subject differently. They look for elegant solutions to problems, revel in playing around with mathematical ideas and talk of the creative nature of mathematics. As the Russian mathematician Sophia Kovalevskaya said "It is impossible to be a mathematician without being a poet in soul." So why is there such a gap between the views of everyday folks and professional mathematicians? Part of the problem lies in how most of us were taught mathematics in school. The mathematics served up there is presented as a series of de-contextualised, abstract ideas, wrested from the human struggles and interactions that gave birth to the ideas. Through looking at some of the history of mathematics, psychological studies into how we come to know mathematics and key ideas in mathematics itself, the intent of this book is, if not to make the reader fall in love with mathematics, then at least to come to understand its nature a little better, and perhaps care a little more for it. In short, this book explores the human side of maths.
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
See how math's infinite mysteries and beauty unfold in this captivating educational book! Discover more than 85 of the most important mathematical ideas, theorems, and proofs ever devised with this beautifully illustrated book. Get to know the great minds whose revolutionary discoveries changed our world today. You don't have to be a math genius to follow along with this book! This brilliant book is packed with short, easy-to-grasp explanations, step-by-step diagrams, and witty illustrations that play with our ideas about numbers. What is an imaginary number? Can two parallel lines ever meet? How can math help us predict the future? All will be revealed and explained in this encyclopedia of mathematics. It's as easy as 1-2-3! The Math Book tells the exciting story of how mathematical thought advanced through history. This diverse and inclusive account will have something for everybody, including the math behind world economies and espionage. This book charts the development of math around the world, from ancient mathematical ideas and inventions like prehistoric tally bones through developments in medieval and Renaissance Europe. Fast forward to today and gain insight into the recent rise of game and group theory. Delve in deeper into the history of math: - Ancient and Classical Periods 6000 BCE - 500 CE - The Middle Ages 500 - 1500 - The Renaissance 1500 - 1680 - The Enlightenment 1680 - 1800 - The 19th Century 1800 - 1900 - Modern Mathematics 1900 - Present The Series Simply Explained With over 7 million copies sold worldwide to date, The Math Book is part of the award-winning Big Ideas Simply Explained series from DK Books. It uses innovative graphics along with engaging writing to make complex subjects easier to understand.
In Five Golden Rules, John L. Casti serves as curator to a brilliant collection of 20th-century mathematical theories, leading us on a fascinating journey of discovery and insight. Probing the frontiers of modern mathematics, Casti examines the origins of some of the most important findings of this century. This is a tale of mystery and logic, elegance and reason; it is the story of five monumental mathematical breakthroughs and how they shape our lives. All those intrigued by the mathematical process, nonacademics and professionals alike, will find this an enlightening, eye-opening, and entertaining work. High school algebra or geometry - and enthusiasm - are the only prerequisites. From the theorem that provided the impetus for modern computers to the calculations that sent the first men to the Moon, these breakthroughs have transformed our lives. Casti illustrates each theorem with a dazzling array of real-world problems it has helped solve - how to calculate the shape of space, optimize investment returns, even chart the course of the development of organisms. Along the way, we meet the leading thinkers of the day: John von Neumann, L. E. J. Brouwer, Marston Morse, and Alan Turing, among others. And we come to understand the combination of circumstances that led each to such revolutionary discoveries as the Minimax Theorem, which spawned the exciting field of game theory, and the Simplex Method, which underpins the powerful tools of optimization theory.