Mathematics of Approximation

Mathematics of Approximation

Author: Johan De Villiers

Publisher: Springer Science & Business Media

Published: 2012-06-30

Total Pages: 418

ISBN-13: 9491216503

DOWNLOAD EBOOK

The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes , Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula ; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation,with an extensive treatment of local spline interpolation,and its application in quadrature. Exercises are provided at the end of each chapter


A Course in Approximation Theory

A Course in Approximation Theory

Author: Elliott Ward Cheney

Publisher: American Mathematical Soc.

Published: 2009-01-13

Total Pages: 379

ISBN-13: 0821847988

DOWNLOAD EBOOK

This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.


Interpolation and Approximation by Polynomials

Interpolation and Approximation by Polynomials

Author: George M. Phillips

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 325

ISBN-13: 0387216820

DOWNLOAD EBOOK

In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.


Interpolation and Approximation

Interpolation and Approximation

Author: Philip J. Davis

Publisher: Courier Corporation

Published: 1975-01-01

Total Pages: 418

ISBN-13: 0486624951

DOWNLOAD EBOOK

Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2016-06-03

Total Pages: 745

ISBN-13: 3319312812

DOWNLOAD EBOOK

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.


Approximation Theory and Methods

Approximation Theory and Methods

Author: M. J. D. Powell

Publisher: Cambridge University Press

Published: 1981-03-31

Total Pages: 356

ISBN-13: 9780521295147

DOWNLOAD EBOOK

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.


Approximation of Elliptic Boundary-Value Problems

Approximation of Elliptic Boundary-Value Problems

Author: Jean-Pierre Aubin

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 386

ISBN-13: 0486457915

DOWNLOAD EBOOK

A marriage of the finite-differences method with variational methods for solving boundary-value problems, the finite-element method is superior in many ways to finite-differences alone. This self-contained text for advanced undergraduates and graduate students is intended to imbed this combination of methods into the framework of functional analysis and to explain its applications to approximation of nonhomogeneous boundary-value problems for elliptic operators. The treatment begins with a summary of the main results established in the book. Chapter 1 introduces the variational method and the finite-difference method in the simple case of second-order differential equations. Chapters 2 and 3 concern abstract approximations of Hilbert spaces and linear operators, and Chapters 4 and 5 study finite-element approximations of Sobolev spaces. The remaining four chapters consider several methods for approximating nonhomogeneous boundary-value problems for elliptic operators.


Diophantine Approximation

Diophantine Approximation

Author: W.M. Schmidt

Publisher: Springer

Published: 2009-02-05

Total Pages: 312

ISBN-13: 3540386459

DOWNLOAD EBOOK

"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)