Quantum Theory for Mathematicians

Quantum Theory for Mathematicians

Author: Brian C. Hall

Publisher: Springer Science & Business Media

Published: 2013-06-19

Total Pages: 566

ISBN-13: 1461471168

DOWNLOAD EBOOK

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.


Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians

Author: Leon Armenovich Takhtadzhi͡an

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 410

ISBN-13: 0821846302

DOWNLOAD EBOOK

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.


Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics

Author: Frederick W. Byron

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 674

ISBN-13: 0486135063

DOWNLOAD EBOOK

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.


MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS

MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS

Author: STEPHEN J. GUSTAFSON

Publisher:

Published: 2020

Total Pages:

ISBN-13: 3030595625

DOWNLOAD EBOOK

The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.


Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics

Author: Gerald Teschl

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 322

ISBN-13: 0821846604

DOWNLOAD EBOOK

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).


Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students

Author: L. D. Faddeev

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 250

ISBN-13: 082184699X

DOWNLOAD EBOOK

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.


The Mathematical Principles of Quantum Mechanics

The Mathematical Principles of Quantum Mechanics

Author: Derek F. Lawden

Publisher: Courier Corporation

Published: 2005-01-01

Total Pages: 306

ISBN-13: 0486442233

DOWNLOAD EBOOK

Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.


Mathematical Topics Between Classical and Quantum Mechanics

Mathematical Topics Between Classical and Quantum Mechanics

Author: Nicholas P. Landsman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 547

ISBN-13: 146121680X

DOWNLOAD EBOOK

This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.


Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics

Author: John von Neumann

Publisher: Princeton University Press

Published: 1955

Total Pages: 462

ISBN-13: 9780691028934

DOWNLOAD EBOOK

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books


A Mathematical Journey to Quantum Mechanics

A Mathematical Journey to Quantum Mechanics

Author: Salvatore Capozziello

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 294

ISBN-13: 3030860981

DOWNLOAD EBOOK

This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schrödinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.