Mathematics for Machine Learning

Mathematics for Machine Learning

Author: Marc Peter Deisenroth

Publisher: Cambridge University Press

Published: 2020-04-23

Total Pages: 392

ISBN-13: 1108569323

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Mathematics for Machine Technology

Mathematics for Machine Technology

Author: John C. Peterson

Publisher: Cengage Learning

Published: 2015-01-01

Total Pages: 0

ISBN-13: 9781133281450

DOWNLOAD EBOOK

Reflecting the latest technology and tools of the trade, MATHEMATICS FOR MACHINE TECHNOLOGY, 7e provides the mathematical skills and practice that students and apprentices will use on the job in the machine trades and manufacturing fields. This comprehensive book combines math concepts with relevant machine applications through industry-specific examples, realistic illustrations, and actual machine applications. Problems and examples progress from the simple to the relatively complex, from general math to trigonometry and solid geometry, and relate directly to how the math is used in machine trades and manufacturing fields. The new Seventh Edition also includes all-new units on electronic calipers, height gages, and electronic micrometers, as well as thorough coverage of measuring in both metric and customary systems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Mathematics for Computer Science

Mathematics for Computer Science

Author: Eric Lehman

Publisher:

Published: 2017-03-08

Total Pages: 988

ISBN-13: 9789888407064

DOWNLOAD EBOOK

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Advances in Mathematics for Industry 4.0

Advances in Mathematics for Industry 4.0

Author: Mangey Ram

Publisher: Academic Press

Published: 2020-10-02

Total Pages: 421

ISBN-13: 012818907X

DOWNLOAD EBOOK

Advances in Mathematics for Industry 4.0 examines key tools, techniques, strategies, and methods in engineering applications. By covering the latest knowledge in technology for engineering design and manufacture, chapters provide systematic and comprehensive coverage of key drivers in rapid economic development. Written by leading industry experts, chapter authors explore managing big data in processing information and helping in decision-making, including mathematical and optimization techniques for dealing with large amounts of data in short periods. - Focuses on recent research in mathematics applications for Industry 4.0 - Provides insights on international and transnational scales - Identifies mathematics knowledge gaps for Industry 4.0 - Describes fruitful areas for further research in industrial mathematics, including forthcoming international studies and research


Machine Tool Practices

Machine Tool Practices

Author: Richard R. Kibbe

Publisher: Pearson

Published: 2010

Total Pages: 0

ISBN-13: 9780135015087

DOWNLOAD EBOOK

This classic book features a richly illustrated, intensely visual treatment of basic machine tool technology and related subjects, including measurement and tools, reading drawings, mechanical hardware, hand tools, metallurgy, and the essentials of CNC. Covering introductory through advanced topics, Machine Tool Practices is formatted so that it may be used in a traditional lab-lecture program or a self-paced program. The book is divided into major sections that contain many instructional units. Each unit contains listed objectives, self tests with answers, and boxed material covering shop tips, safety, and new technologies. In this updated edition there are over 600 new photos and 1,500 revised line drawings!


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography


Data Science and Machine Learning

Data Science and Machine Learning

Author: Dirk P. Kroese

Publisher: CRC Press

Published: 2019-11-20

Total Pages: 538

ISBN-13: 1000730778

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code


Mathematics of Big Data

Mathematics of Big Data

Author: Jeremy Kepner

Publisher: MIT Press

Published: 2018-08-07

Total Pages: 443

ISBN-13: 0262347911

DOWNLOAD EBOOK

The first book to present the common mathematical foundations of big data analysis across a range of applications and technologies. Today, the volume, velocity, and variety of data are increasing rapidly across a range of fields, including Internet search, healthcare, finance, social media, wireless devices, and cybersecurity. Indeed, these data are growing at a rate beyond our capacity to analyze them. The tools—including spreadsheets, databases, matrices, and graphs—developed to address this challenge all reflect the need to store and operate on data as whole sets rather than as individual elements. This book presents the common mathematical foundations of these data sets that apply across many applications and technologies. Associative arrays unify and simplify data, allowing readers to look past the differences among the various tools and leverage their mathematical similarities in order to solve the hardest big data challenges. The book first introduces the concept of the associative array in practical terms, presents the associative array manipulation system D4M (Dynamic Distributed Dimensional Data Model), and describes the application of associative arrays to graph analysis and machine learning. It provides a mathematically rigorous definition of associative arrays and describes the properties of associative arrays that arise from this definition. Finally, the book shows how concepts of linearity can be extended to encompass associative arrays. Mathematics of Big Data can be used as a textbook or reference by engineers, scientists, mathematicians, computer scientists, and software engineers who analyze big data.